Outsmarting the Number One Killer

13 - Appendix

A Science-based Program for Reversing Atherosclerotic Plaque, Heart Attacks and Strokes

by

Timothy J. Smith, M.D.

Original Book from Internet\footnote{Documento: “...gaia/eng/vital/timsmith/OutsmartingNumberOneKiller.pdf”}
Contents

13 Appendix 145

13.1 Final thoughts ................................................................. 145
13.2 About the author ........................................................... 147
13.3 More information ........................................................... 148
13.4 References ................................................................. 148
Chapter 13

Appendix

13.1 Final thoughts

Of all the things I’ve lost, I miss my mind the most.

- From a bumper sticker spotted in Berkeley, California

By now you know how strongly I feel about the importance of sidestepping the locomotive hurtling toward two out of every three of us.

Look to your left. Look to your right. Atherosclerosis will deliver an early departure to two of you.

When you consider the stakes - we’re talking life or death here - those aren’t very good odds. But for me personally, premature death from a heart attack is not nearly as scary as suffering a non-lethal stroke and having to live the rest of my life without a functioning brain. Let me share one final story to try to illustrate this idea.

Medical school, as I remember it, was a seemingly endless blur - a procession of days crammed full of powerful images of disease and healing, life and death. One day you’d be in surgery, holding retractors during a coronary bypass, the next might find you administering electroencephalograms (EEGs) or delivering babies. It was sort of like a marathon showing of ER reruns, except these episodes were all too real. You’d catch a little sleep, then jump right back into the maelstrom as the endless succession of intense dramas started all over again.

Of all the images that bombarded my senses during my medical school years, one remains indelibly etched in my memory. I want to share it with you because it so vividly illustrates why a healthy brain, free of atherosclerotic plaque, is indispensable for all else life has to offer.

It happened during my junior year. After two years of basic science courses, my classmates and I had finally begun our clinical training. At last, we were seeing real live patients rather than reading about them in textbooks.

My first clinical assignment was on the neurology wards. Rounds were usually held in the university hospital, but on one appropriately gloomy wintry day, we were summoned to a chronic care facility far removed from the main campus. I’m sure we looked for all the world like a flock of eager ducklings as we trundled along behind Bob Townsend, M.D., our neurology professor.

After looking in on an assortment of chronic neurological patients, Dr. Townsend stopped abruptly in front of the closed door to a private room. “Please don’t talk while we’re in this room. I’ll explain later.” Then he held open the door, and one by one, we quietly filed in.

Inside, the scene was surreal -- and depressing. The room was darkened and eerily quiet. A gaunt old man in a white hospital gown lay flat in the bed, passive and motionless. His head was propped
up on a pillow, and he stared, expressionless, in the general direction of a television set that was
turned on but had no picture or sound - just the fuzz you get when a channel isn't tuned in.

He didn't react to our presence. No body movement, no utterance, no blink - just a sunken,
glassy gaze. The darkened room, the lifeless yet living man, Dr. Townsend’s secrecy - all of it
gave me the willies. My classmates also suspected something unusual was up. They began shooting
furtive glances back and forth, as if to say, “This is weird. What gives here?” Though the man was
clearly alive, he was, in a sense, more dead than alive.

Obviously not in a mood to linger, Dr. Townsend performed one of the fastest and most per-
functory neurological exams I've ever seen. Almost as soon as we had entered the room, we found
ourselves back outside in the hall.

Dr. Townsend quickly slipped into teaching mode, grilling our eager little group on comas and
strokes and brain syndromes. We weren't the first group of would-be clinicians he'd seen, nor would
we be the last. He rapidly moved us through a series of questions designed to help us understand
what living brains do, what dead - or dying - brains cannot do, and how all this applied to the
patient we had just seen.

Dr. Townsend then explained that this gentleman had totally lost his cognitive functioning as a
result of cerebrovascular disease. In effect, atherosclerosis had choked off the blood supply in the
arteries feeding his brain. He had been totally unresponsive for years. “Because he is unable to
respond, we don't know whether he can see, hear, smell, or even think. That is why I asked you not
to talk. It is possible, though rather unlikely, that he could be able to hear you.

Only his cognitive and motor centers are affected - not the vegetative ones, which control bodily
functions like heart rate and digestion,” Dr. Townsend continued. “His vital signs are normal. It
is possible that he could perceive or experience stimuli, like our conversation. But because he is
totally unable to react to stimuli by initiating voluntary motor behavior, he has absolutely no way of
responding. So we don't really know whether he is thinking and, if he is, what he's thinking about.”

When we were just about to move along to the next room, Dr. Townsend - almost as an
afterthought, in a tone that seemed to seek immunity for him and the rest of us from a similar, cruel
fate - quietly revealed the man’s identity: “Gentlemen,” he said, “that was Theodore Jenkins”.

What a shock. A tingly feeling went up my spine. We all knew the name, but no one had
recognized him. That shell of a man was none other than the recently retired president of the
university. He had been a mental giant, a man of the most impeccable intellectual credentials. His
brain had served him well.

On the way home, a profound sadness came over me. I wondered how such a fate could befall such
an intelligent, accomplished man. To be alive without a functioning brain seemed a horrendous fate.
Why did his physical body have to live out its life span when his brain had already checked out?
To see him incapacitated that way triggered a cascade of strong feelings and a myriad of questions
about life and death.

Beyond these imponderables, certain facts were clear. Dr. Jenkins was a victim of our medical
ignorance. He had suffered the consequences of cerebral atherosclerosis in the days before we knew
that this conditions could be prevented and reversed through the kind of diet, supplementation, and
exercise described in this book. Deprived of these protections, atherosclerosis had choked off the
blood supply to his brain cells.

Thanks to what we've learned in the 40 or so years since this scenario played out, we now have
the ability to protect the brain, heart, and entire vascular system from the ravages of atherosclerosis.
The information in this book can help you protect that vital resource between your ears so you can
keep your mind’s fires burning as brightly as possible for as long as possible.

So - one last time - I strongly urge you to GET TESTED!
13.2 About the author

![Timothy J. Smith, M.D.](image)

Figure 13.1: Timothy J. Smith, M.D.

Timothy J. Smith, M.D. has been studying and practicing alternative, nutritional, and conventional healing principles for over 40 years. As an undergraduate he drifted about, accumulating transcripts from the University of Wisconsin, University of Illinois, Northwestern University, and Harvard University. In his early 20s he set his sights on a career in medicine. He graduated from the University of Cincinnati College of Medicine in 1970, completed his internship at the Presbyterian Hospital, Pacific Medical Center in San Francisco and his residency at the University of California, San Francisco Medical Center. He subsequently established a general family practice in Berkeley, California, where he integrated conventional medical practice with alternative modalities and molecular medicine. Dr. Smith’s current practice consists of telephone consultations with doctors and patients around the world. He specializes in difficult diagnoses and designs alternative and integrative medical treatment programs for a wide variety of medical conditions, including nutritional medicine protocols for the reversal of atherosclerotic heart and cardiovascular disease.

A longtime student and advocate of Chinese Traditional Medicine, Dr. Smith was instrumental in introducing acupuncture to the American medical community. In 1972, he founded the first publicly funded acupuncture clinic in the United States. In 1977, Dr. Smith joined the first delegation of American physicians practicing Chinese Traditional Medicine to visit the People’s Republic of China. Dr. Smith is a founding member of the American Academy of Medical Acupuncture and past vice president of the American Acupuncture Association and has participated in designing the first national American Academy of Medical Acupuncture certification examination for physicians and the state licensing examinations for non-physician acupuncturists in California and Florida.

Recognizing that the same concepts that apply to healing are also effective for prevention, and with a career-long interest in deciphering the biochemical causes of illness, in the 1980s Dr. Smith shifted his focus to clinical applications of new research developments in molecular and cell biology. His emphasis on prescribing nontoxic, plant-based medicines signals a shift in the dominant medical paradigm away from symptom-suppressing pharmaceuticals and toward natural medicines that address the underlying molecular biological causes of disease and nourish the healing process. To encourage application of these principles in everyday life, in 1999 Dr. Smith published Renewal: The Anti-Aging Revolution (Rodale Press; St. Martin’s Press), a 680 page book presenting a program of diet, supplementation, and exercise for slowing and reversing the aging process and creating optimum health.

After publishing Renewal, Dr. Smith turned his attention to applying the latest research developments in molecular biology and nutritional medicine to prevent and reverse atherosclerotic cardiovascular disease (heart attack and stroke). This book represents the culmination of that work,
with astonishingly successful outcomes in hundreds of patients over a span of fifteen years.

Dr. Smith is a member of numerous professional organizations, including the American Academy of Anti-Aging Medicine, the American College for the Advancement of Medicine, and the Physicians Committee for Responsible Medicine.

Dr. Smith lives in Sebastopol, California, with his wife, Dellie, and their two daughters.

13.3  More information

Contact Information

Please feel free to contact the author at drsmith@renewalresearch.com. For more information, updated versions of this book, and other writings by Dr Smith, go to www.timsmithmd.com1.

Product Information

To purchase products mentioned in this book, go to www.renewalresearch.com2.

13.4  References

---

1Internet: “http://www.timsmithmd.com”.
2Internet: “http://www.renewalresearch.com”.
Bibliography


34. Bharat B. Aggarwal, Young-Joon Surh and Shishir Shishodia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. 10.1007/978-0-387-46401-5_16


154


[124] 19. Dana E. King, MD, MS; Brent M. Egan, MD; Robert F. Woolson, PhD; Arch G. Mainous III, PhD; Yaser Al-Solaiman, MD; Ammar Jesri, MD. Effect of a High-Fiber Diet vs a Fiber-Supplemented Diet on C-Reactive Protein Level. Arch Intern Med. 2007;167:502-506.


[141] 140. Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9036. RdiaZA@mednet.swmed.edu.

[142] 32. Devaraj, S., and Jialal, I. Alpha tocopherol supplementation decreases serum C-Reactive Protein and Monocyte interleukin 6 levels in normal volunteers and type 2 diabetic patients. Free Radical Biology and Medicine, 2000, 29: 8, 790-792.


[164] 125. Eric B. Rimm, ScD; Walter C. Willett, MD, DrPH; Frank B. Hu, MD, PhD; Laura Sampson, MS; Graham A. Colditz, MB, BS, DrPH; JoAnn Manson, MD, DrPH; Charles Hennekens, MD, DrPH; Meir J. Stampfer, MD, DrPH. Folate and Vitamin B6 From Diet and Supplements in Relation to Risk of Coronary Heart Disease Among Women. JAMA, 1998; vol 279.


77. Fu, A., and Nair, K.S. Age effect on fibrinogen and albumin synthesis in humans. Am J Physiol 275 (Endocrinol Metab 38), 1998 E1203-E1030


Chapter 8 - C-Reactive Protein: The Fire Alarm Molecule


[201] 90. Gladys Block, Christopher D. Jensen, Tapashi B. Dalvi, Edward P. Norkus, Mark Hudes,


Chapter 7 - Lipoproteins and the Lipid Panel: Cholesterol and LDL, Triglycerides, HDL, VLDL

Chapter 12 - LDL Particle Size


[229] 167. Harris WS. Omega-3 Fatty Acids and Bleeding: Cause for Concern? Am J Cardiol 2007;99[suppl]:44C-46C.


[236] 179. Harris WS. The omega-3 index as a risk factor for coronary heart disease. Am J C


[295] 130. Jeffrey A. Tice, MD; Elizabeth Ross, MD; Pamela G. Coxson, PhD; Irwin Rosenberg, MD; Milton C. Weinstein, PhD; M. G. Myriam Hunink, MD, PhD; Paula A. Goldman, MPH; Lawrence Williams, MS; Lee Goldman, MD, MPH. Cost-effectiveness of Vitamin Therapy to Lower Plasma Homocysteine Levels for the Prevention of Coronary Heart Disease: Effect of Grain Fortification and Beyond. JAMA. 2001;286:936-943.


[297] 11. Jørgen Jeppesen, MD; Hans Ole Hein, MD; Poul Suadicani, DD; ; Finn Gynelberg, MD Triglyceride Concentration and Ischemic Heart Disease: An Eight-Year Follow-up in the Copenhagen Male Study. Circulation. 1998;97:1029-1036.

166

[299] 8. Juha Vakkilainen, MD; Sari Mäkimattila, MD, MSc; Anneli Seppälä-Lindees, MD; Satu Vehkavaara, MD; Sanni Lahdenperä, MD; Per-Henrik Groop, MD; Marja-Riitta Taskinen, MD; Hannele Yki-Järvinen, MD. Endothelial Dysfunction in Men With Small LDL Particles. Circulation. 2000;102:716-721.


[316] 31. Katherine Esposito, MD; Alessandro Pontillo, MD; Carmen Di Palo; Giovanni Giugliano, MD; Mariangela Masella, MD; Raffaele Marfella, MD, PhD; Dario Giugliano, MD, PhD. Effect of Weight Loss and Lifestyle Changes on Vascular Inflammatory Markers in Obese Women. JAMA. 2003;289:1799-1804.


Chapter 5 - Atherogenesis: How Arteries Fail


[350] 22. Kushner, I. C-reactive protein elevation can be caused by conditions other than inflammation and may reflect biologic aging. Cleveland Clinic Journal of Medicine, 2001, 68: 6, 535-540.


[388] 136. Mariska Klerk, MSc; Petra Verhoef, PhD; Robert Clarke, MD; Henk J. Blom, PhD; Frans J. Kok, PhD; Evert G. Schouten, MD, PhD; and the MTHFR Studies Collaboration Group. JAMA. 2002;288:2023-2031.


174


[430] 134. MTHFR 677CT Polymorphism and Risk of Coronary Heart Disease: A Meta-analysis.


Chapter 11 - Blood Sugar, Insulin Resistance, and The Metabolic Syndrome


[490] 84. Picker JD, Coyle JT. Do maternal folate and homocysteine levels play a role in neurodevelopmental processes that increase risk for schizophrenia? Harv Rev Psychiatry. 2005 Jul;13 (4):197-205.


Chapter 10 - Fibrinogen: Clotting factor and inflammatory protein


Chapter 2 - Atherosclerosis, the Silent Killer and

Chapter 4 - An Epidemic of Staggering Proportions


185


[623] 128. Stephen M. Schwartz, PhD, MPH; David S. Siscovick, MD, MPH; M. Rene Malinow, MD; Frits R. Rosendaal, MD, PhD; R. Kevin Beverly, MS; David L. Hess, PhD; Bruce M. Psaty, MD, PhD, MPH; W. T. Longstreth, Jr, MD, MPH; Thomas D. Koepsell, MD, MPH; T. E. Raghu-nathan, PhD; Pieter H. Reitsma, PhD. Myocardial Infarction in Young Women in Relation to Plasma Total Homocysteine, Folate, and a Common Variant in the Methylenetetrahydrofolate Reductase Gene. Circulation. 1997;96:412-417.


[625] 8. Steven M. Haffner, MD; Charles M. Alexander, MD; Thomas J. Cook, MS; Stephen J. Bocuzzi, PhD; Thomas A. Musliner, MD; Terje R. Pedersen, MD; John Kjekshus, MD; Kalevi Pyörälä, MD; for the Scandinavian Simvastatin Survival Study Group. Reduced Coronary Events in Simvastatin-Treated Patients With Coronary Heart Disease and Diabetes or Impaired Fasting Glucose Levels


[654] 133. Tawakol A; Omland T; Gerhard M; Wu JT; Creager MA. Hyperhomocyst (e) inemia is associated with impaired endothelium-dependent vasodilatation in humans. Circulation, 1997 Mar 4; 95:5; 1119-21.


Chapter 9 - Homocysteine: Sandblaster From Hell


193


