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0.2 PrefaeEinstein endorsed the view of Kaluza, that gravity ould be ombined with eletromagnetism if thedimensionality of the world is extended from 4 to 5. Klein applied this idea to quantum theory, layinga basis for the various modern versions of string theory. Reently, work by a group of researhers hasresulted in a oherent formulation of 5D relativity, in whih matter in 4D is indued by geometryin 5D. This theory is based on an unrestrited group of 5D oordinate transformations that leads tonew solutions and agreement with the lassial tests of relativity. This book ollets together themain tehnial results on 5D relativity, and shows how far we an realize Einstein's vision of physisas geometry.Spae, time and matter are physial onepts, with a long but somewhat subjetive history. Tensoralulus and di�erential geometry are highly developed mathematial formalisms. Any theory whihjoins physis and algebra is perfore open to disussions about interpretation, and the one presented inthis book leads to new issues onerning the nature of matter. The present theory should not stritlyspeaking be alled Kaluza-Klein: KK theory relies on onditions of ylindriity and ompati�ationwhih are now removed. The theory should also, while lose to it in some ways, not be onfusedwith general relativity: GR theory has an expliit energy-momentum tensor for matter while nowthere is none. What we all matter in 4D spaetime is the manifestation of the �fth dimension,hene the phrase indued-matter theory sometimes used in the literature. However, there is nothingsarosant about 5D. The �eld equations take the same form in ND, and N is to be hosen with aview to physis. Thus, superstrings (10D) and supergravity (11D) are valid onstruts. However,pratial physial appliations are expeted to be forthoming only if there is physial understandingof the nature of the extra dimensions and the extra oordinates. In this regard, spae-time-mattertheory is uniquely fortunate. This beause (unrestrited) 5D Riemannian geometry turns out to bejust algebraially rih enough to unify gravity and eletromagnetism with their soures of mass andharge. In other words, it is a Mahian theory of mehanis.There is now a large and rapidly growing literature on this theory, and the author is aware thatwhat follows is more like a textbook on basis than a review of reent disoveries. It should also bestated that muh of what follows is the result of a group e�ort over time. Thus redit is due espeiallyto H. Liu, B. Mashhoon and J. Pone de Leon for their solid theoretial work; to C.W.F. Everittwho sagely kept us in ontat with experiment; and to A. Billyard, D. Kalligas, J.M. Overduin andW. Sajko, who as graduate students heerfully takled problems that would have made their olderolleagues blink. Thanks also go to S. Chatterjee, A. Coley, T. Fukui and R. Tavakol for valuableontributions. However, the responsibility for any errors or omissions rests with the author.The material in this book is diverse. It is largely onerned with higher-dimensional gravity,touhes partile physis, and looks for appliation to astrophysis and osmology. Depending ontheir speiality, some workers may not wish to read this book from over to over. Therefore thematerial has been arranged in approximately self-ontained hapters, with a bibliography at the endof eah. The material does, of ourse, owe its foundation to Einstein. However, it will be apparentto many readers that it also owes muh to the ideas of his ontemporary, Eddington.Paul S. Wesson0.3 ContentsPrefae V1. Conepts and Theories of Physis 11.1 Introdution 13
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Chapter 1Conepts and Theories of Physis\Physis should be beautiful"(Sir Fred Hoyle, Venie, 1974)1.1 IntrodutionPhysis is a logial ativity, whih unlike some other intelletual pursuits frowns on radial departures,progressing by the introdution of elegant ideas whih give a better basis for what we already knowwhile leading to new results. However, this inevitably means that the subjet at a fundamental levelis in a onstant state of reinterpretation. Also, it is often not easy to see how old onepts �t into anew framework. A prime example is the onept of mass, whih has traditionally been regarded asthe soure of the gravitational �eld. Historially, a soure and its �eld have been viewed as separatethings. But as reognized by a number of workers through time, this distintion is arti�ial andleads to signi�ant tehnial problems. Our most suessful theory of gravity is general relativity,whih traditionally has been formulated in terms of a set of �eld equations whose left-hand sideis geometrial (the Einstein tensor) and whose right-hand side is material (the energy-momentumtensor). However, Einstein himself realized soon after the formulation of general relativity that thissplit has drawbaks, and for many years looked for a way to transpose the \base-wood" of the right-hand side of his equations into the \marble" of the left-hand side. Building on ideas of Kaluza andKlein, it has reently beome feasible to realize Einstein's dream, and the present volume is mainlya olletion of tehnial results, whih shows how this an be done. The basi idea is to unify thesoure and its �eld using the rih algebra of higher-dimensional Riemannian geometry. In otherwords: spae, time and matter beome parts of geometry.This is an idea many workers would espouse, but to be something more than an aademi jauntwe have to reall the two onditions noted above. Namely, we have to reover what we alreadyknow (with an unavoidable need for reinterpretation); and we have to derive something new withat least a prospet of testability. The present hapter is onerned with the �rst of these, andthe sueeding hapters mainly with the seond. Thus the present hapter is primarily a reviewof gravitation and partile physis as we presently understand these subjets. Sine this is mainlyknown material, these aounts will be kept brief, and indeed those readers who are familiar with thesesubjets may wish to boost through them. However, there is a theme in the present hapter, whihtransends the division of physis into theories of marosopi and mirosopi sope. This is thenature and origin of the so-alled fundamental onstants. These are ommonly taken as indiatorsof what kind of theory is under onsideration (e.g., Newton's onstant is ommonly regarded astypial of lassial theory and Plank's onstant as typial of quantum theory). But at least onefundamental onstant, the speed of light, runs through all modern physial theories; and we annot7



expet to reah a meaningful uni�ation of the latter without a proper understanding of where thefundamental onstants originate. In fat, the hapters after this one make use of a view that itis neessary to establish and may be unfamiliar to some workers: the fundamental onstants arenot really fundamental, their main purpose being to enable us to dimensionally transpose ertainmaterial quantities so that we an write down onsistent laws of physis.1.2 Fundamental onstantsA lot has been written on these, and there is a large literature on unsuessful searhes for theirpossible variations in time and spae. We will be mainly onerned with their origin and status, onwhih several reviews are available. Notably there are the books by Wesson (1978), Petley (1985)and Barrow and Tipler (1986); the onferene proeedings edited by MCrea and Rees (1983); andthe artiles by Barrow (1981) and Wesson (1992). We will presume a working physiist's knowledgeof the onstants onerned, and the present setion is to provide a basis for the disussions of physialtheory whih follow.The so-alled fundamental onstants are widely regarded as a kind of distillation of physis. Theirdimensions are related to the forms of physial laws, whose struture an in many ases be reoveredfrom the onstants by dimensional analysis. Their sizes for some hoie of units allow the physiallaws to be evaluated and ompared to observation. Despite their pereived fundamental nature,however, there is no theory of the onstants as suh. For example, there is no generally aeptedformalism that tells us how the onstants originate, how they relate to one another, or how many ofthem are neessary to desribe physis. This lak of bakground seems odd for parameters that arewidely regarded as basi.The onstants we will be primarily onerned with are those that �gure in gravity and partilephysis. It is onvenient to ollet the main ones here, along with their dimensions and approximatesizes in .g.s. units:Speed of light  L T�1 3:0�1010Gravitational onstant G M�1 L3 T�2 6:7�10�8Plank's onstant h M L2 T�1 6:6�10�27Eletron harge (modulus) e M1=2 L3=2 T�1 4:8�10�10Here e is measured in eletrostati or Gaussian units. We will use e.s.u. in the bulk of whatfollows, though S.I. will be found useful in plaes. The two systems of units are of ourse related by4�"0, where the permittivity of free spae is "0 = 8:9� 10�12C2m�3s2Kg�1. In S.I. e = 1:6� 10�19C(Coulombs: see Jakson 1975, pp. 29, 817; and GriÆths 1987, p. 9). The permeability of free spae�0, is not an independent onstant beause 2 � 1="0�0. The above table suggests that we need tounderstand 3 overlapping things: onstants, dimensions and units.One ommon view of the onstants is that they de�ne asymptoti states. Thus  is the maximumveloity of a massive partile moving in at spaetime; G de�nes the limiting potential for a massthat does not form a blak hole in urved spaetime; "0 is the empty-spae or vauum limit of thedieletri onstant; and h de�nes a minimum amount of energy (alternatively ~ � h=2� e de�nes aminimum amount of angular momentum). This view is aeptable, but somewhat begs the questionof the onstants' origin.Another view is that the onstants are neessary inventions. Thus if a photon moves away froman origin and attains distane r in time t, it is neessary to write r = t as a way of reoniling thedi�erent natures of spae and time. Or, if a test partile of mass m1 moves under the gravitationalattration of another mass m2 and its aeleration is d2r=dt2 at separation r, it is observed that8



m1d2r=dt2 is proportional to m1m2=r2, and to get an equation out of this it is neessary to writed2r=dt2 = Gm2=r2 as a way of reoniling the di�erent natures of mass, spae and time. A similarargument applies to the motion of harged bodies and "0. In quantum theory, the energy E of aphoton is diretly related to its frequeny �, so we neessarily have to write E = h�. The point is,that given a law of physis whih relates quantities of di�erent dimensional types, onstants with thedimensions  = LT�1; G =M�1L3T�2; "0 = Q2M�1L�3T 2 and h =ML2T�1 are obligatory.This view of the onstants is logial, but disturbing to many beause it means they are not reallyfundamental and in fat largely subjetive in origin. However, it automatially answers the questionraised in the early days of dimensional analysis as to why the equations of physis are dimensionallyhomogeneous (e.g. Bridgman 1922). It also explains why subsequent attempts to formalize theonstants using approahes suh as group theory have led to nothing new physially (e.g. Bunge1971). There have also been notable adherents of the view that the fundamental onstants are notwhat they appear to be. Eddington (1929, 1935, 1939) put forward the opinion that while an externalworld exists, our laws are subjetive in the sense that they an onstruted to math our own physialand mental modes of pereption. Though he was severely ritiized for this opinion by physiistsand philosophers alike, reent advanes in partile physis and relativity make it more palatable nowthan before. Je�reys (1973, pp. 87-94, 97) did not see eye to eye with Eddington about the sizesof the fundamental onstants, but did regard some of them as disposable. In partiular, he pointedout that in eletrodynamis  merely measures the ratio of eletrostati and eletromagneti unitsfor harge. Hoyle and Narlikar (1974, pp. 97, 98) argued that the 2 in the ommon relativistiexpression (2t2 � x2 � y2 � z2) should not be there, beause \there is no more logial reason forusing a di�erent time unit than there would be for measuring x, y, z in di�erent units". Theystated that the veloity of light is unity, and its size in other units is equivalent to the de�nition1 s = 299 792 500 m, where the latter number is manmade. MCrea (1986, p. 150) promulgatedan opinion that is exatly in line with what was disussed above, notably in regard to , h and G,whih he regarded as \onversion onstants and nothing more". These omments show that there isa ase that an be made for removing the fundamental onstants from physis.Absorbing onstants in the equations of physis has beome ommonplae in reent years, parti-ularly in relativity where the algebra is usually so heavy that it is undesirable to enumber it withunneessary symbols. Formally, the rules for arrying this out in a onsistent fashion are well known(see e.g. Desloge 1984). Notably, if there are N onstants with N bases, and the determinant of theexponents of the onstants' dimensions is nonzero so they are independent, then their magnitudesan be set to unity. For the onstants ; G; "0; h with bases M; L; T; Q it is obvious that "0 andQ an be removed this way. (Setting "0 = 1 gives Heaviside-Lorentz units, whih are not the sameas setting 4�"0 = 1 for Gaussian units, but the priniple is learly the same: see GriÆths, 1987, p.9.) The determinant of the remaining dimensional ombinations M0L1T�1; M�1L3T�2; M1L2T�1is �nite, so the other onstants ; G; h an be set to unity. Coneptually, the absorbing of onstantsin this way prompts 3 omments. (a) There is an overlap and ambiguity between the idea of abase dimension and the idea of a unit. All of mehanis an be expressed with dimensional basesM; L; T ; and we have argued above that these originate beause of our pereptions of mass, lengthand time as being di�erent things. We ould replae one or more of these by another base (e.g. inengineering fore is sometimes used as a base), but there will still be 3. If we extend mehanisto inlude eletrodynamis, we need to add a new base Q. But the priniple is lear, namely thatthe base dimensions reet the nature and extent of physial theory. In ontrast, the idea of a unitis less oneptual but more pratial. We will disuss units in more detail below, but for now wepoint up the distintion by noting that a onstant an have di�erent sizes depending on the hoieof units while retaining the same dimensions. (b) The proess of absorbing onstants annot bearried arbitrarily far. For example, we annot set e = 1, ~ = 1 and  = 1 beause it makes theeletrodynami �ne-struture onstant � � e2=~ equal to 1, whereas in the real world it is observedto be approximately 1=137. This value atually has to do with the peuliar status of e ompared to9



the other onstants (see below), but the aution is well taken. () Constants mutate with time. Forexample, the loal aeleration of gravity g was apparently at one time viewed as a `fundamental'onstant, beause it is very nearly the same at all plaes on the Earth's surfae. But today weknow that g = GME=r2E in terms of the mass and radius of the Earth, thus rede�ning g in morebasi terms. Another example is that the gravitational oupling onstant in general relativity is notreally G but the ombination 8�G=4 (Setion 1.3), and more examples are forthoming from partilephysis (Setion 1.4). The point of this and the preeding omments is that where the fundamentalonstants are onerned, formalism is inferior to understanding.To gain more insight, let us disuss in greater detail the relation between base dimensions andunits, onentrating on the latter. There are 7 base dimensions in widespread use (Petley 1985, pp.26-29). Of these 3 are the familiar M; L; T of mehanis. Then eletri urrent is used in plaeof Q. And the other 3 are temperature, luminous intensity and amount of substane (mole). Asnoted above, we an swap dimensional bases if we wish as a matter of onveniene, but the status ofphysis �xes their number. By ontrast, hoies of units are in�nite in number. At present there isa propensity to use the S.I. system (Smith 1983). While not enamoured by workers in astrophysisand ertain other disiplines beause of the awkwardness of the ensuing numbers, it is in widespreaduse for laboratory-based physis. The latter requires well-de�ned and reproduible standards, and itis relevant to review here the status of our basi units of time, length and mass.The seond in S.I. units is de�ned as 9 192 631 770 periods of a mirowave osillator running underwell-de�ned onditions and tuned to maximize the transition rate between two hyper�ne levels inthe ground state of atoms of 133Cs moving without ollisions in a near vauum. This is a fairlysophistiated de�nition, whih is used beause the aesium lok has a long-term stability of 1 partin 1014 and an auray of reproduibility of 1 part in 1013. These spei�ations are better thanthose of any other apparatus, though in priniple a water lok would serve the same purpose. Somuh for a unit of time. The metre was originally de�ned as the distane between two srath markson a bar of metal kept in Paris. But it was rede�ned in 1960 to be 1 650 763.73 wavelengths of one ofthe orange-red lines in the spetrum of a 83Kr lamp running under ertain well-de�ned onditions.This standard, though, was de�ned before the invention of the laser with its high degree of stability,and is not so good. A better de�nition of the metre an be made as the distane traveled by lightin vauum in a time of 1/2 997 924.58 (aesium lok) seonds. Thus we see that a unit of lengthan be de�ned either autonomously or in onjuntion with the speed of light. The kilogram startedas a lump of metal in Paris, but unlike its ompatriot the metre ontinued in use in the form ofarefully weighed opies. This was beause Avogadro's number, whih gives the number of atomsin a mass of material equal to the atomi number in grams, was not known by traditional means tovery high preision. However, it is possible to obtain a better de�nition of the kilogram in terms ofAvogadro's number derived from the lattie spaing of a pure rystal of a material like 26Si, wherethe spaing an be determined by X-ray di�ration and optial interferene. Thus, a unit of massan be de�ned either primitively or in terms of the mass of a rystal of known size. We onlude thatmost auray an be ahieved by de�ning a unit of time, and using this to de�ne a unit of length,and then employing this to obtain a unit of mass. However, more diret de�nitions an be made forall of these quantities, and there is no reason as far as units are onerned why we should not absorb, G and h.This was atually realized by Plank, who noted that their base dimensions are suh as to allowus to de�ne `natural' units of mass, length and time. (See Barrow 1983: similar units were atuallysuggested by Stoney somewhat earlier; and some workers have preferred to absorb ~ rather thanh.) The orrespondene between natural or Plank units and the onventional gram, entimetre andseond an be summarized as follows:1mp � �~G�1=2 = 2:2� 10�5g 1g = 4:6� 104mp10



1lp � �G~3 �1=2 = 1:6� 10�33m 1m = 6:3� 1032lp
1tp � �G~5 �1=2 = 5:4� 10�44s 1s = 1:9� 1043tpIn Plank units, all of the onstants , G and ~ beome unity and they onsequently disappear fromthe equations of physis.This is onvenient but it involves a hoie of units only and does not neessarily imply anythingmore. It has often been stated that a onsistent theory of quantum gravity that involves , G and~ would naturally produe partiles of the Plank mass noted above. However, this is theoretiallyunjusti�ed based on what we have disussed; and seems to be pratially supported by the observationthat the universe is not dominated by 10�5 g blak holes. A more signi�ant view is that allmeasurements and observations involve omparing one thing with another thing of similar type toprodue what is ultimately a dimensionless number (see Dike 1962; Bekenetein 1979; Barrow 1981;Smith 1983; Wesson 1992). The latter an have any value, and are the things that physis needsto explain. For example, the eletromagneti �ne-struture onstant � � e2=~ �= 1=137 needs tobe explained, whih is equivalent to saying that the eletron harge needs to be explained (GriÆths1987). The `gravitational �ne-struture onstant' Gm2p=~ �= 5� 10�39 needs to be explained, whihis equivalent to saying that the mass of the proton needs to be explained (Carr and Rees 1979). Andalong the same lines, we need to explain the onstant involved in the observed orrelation betweenthe spin angular momenta and masses of astronomial objets, whih is roughly GM2=J �= 1=300(Wesson 1983). In other words, we get no more out of dimensional analysis and a hoie of unitsthan is already present in the underlying equations, and neither tehnique is a substitute for properphysis.The physis of explaining the harge of the eletron or the mass of a proton, referred to above,probably lies in the future. However, some omments an be made now. As regards e, it is anobserved fat that � is energy or distane-dependent. Equivalently, e is not a fundamental onstantin the same lass as , h and G. The urrent explanation for this involves vauum polarization,whih e�etively sreens the harge of one partile as experiened by another (see Setion 1.4). Thismehanism is depressingly mehanial to some �eld theorists, and in attributing an ative role tothe vauum would have been anathema to Einstein. [There are also alternative explanations for it,suh as the inuene of a salar �eld, as disussed in Nodvik (1985) and Chapter 5.℄ However, thephilosophy of trying to understand the eletron harge, rather than just aepting it as a given, hasundoubted merit. The same applies to the masses of the elementary partiles, whih however areunquantized and so present more of a hallenge. The main question is not whether we wish to explainharges and masses, but rather what is the best approah.In this regard, we note that both are geometrizable (Hoyle and Narlikar 1974; Wesson 1992). Therest mass of a partile m is the easiest to treat, sine using G or h we an onvert m to a length:xm � Gm2 or xm � hm :Physially, the hoie here would onventionally be desribed as one between gravitational or atomiunits, a ploy whih has been used in several theories that deal with the nature of mass (see Wesson1978 for a review). Mathematially, the hoie is one of oordinates, provided we absorb the onstantsand view mass as on the same footing as time and spae (see Chapter 7). The eletri harge of a11



partile q is harder to treat, sine it an only be geometrized by inluding the gravitational onstantvia xq � (G=4)1=2q. This, together with the trite but irrefutable fat that masses an arry hargesbut not the other way round, suggests that mass is more fundamental than harge.1.3 General relativityIn the original form of this theory due to Einstein, spae is regarded as a onstrut in whih onlythe relations between objets have meaning. The theory agrees with all observations of gravitationalphenomena, but the best books that deal with it are those whih give a fair treatment of the theory'soneptual impliations. Notably, those by Weinberg (1972), Misner, Thome and Wheeler (1973),Rindler (1977) and Will (1993). We should also mention the book by Jammer (1961) on onepts ofmass; and the onferene proeedings edited by Barbour and P�ster (1995) on the idea due to Mahthat mass loally depends on the distribution of matter globally. The latter was of ourse a majormotivation for Einstein, and while not inorporated into standard general relativity is an idea thatwill reour in subsequent hapters.The theory is built on 10 dimensionless potentials whih are the independent elements in a 4 x 4metri tensor g�� (�; � = 0� 3). These de�ne the square of the distane between 2 nearby points in4D via ds2 = g��dx�dx�. (Here a repeated index upstairs and downstairs is summed over, and belowwe will use the metri tensor to raise and lower indies on other tensors.) The oordinates x� are ina loal limit identi�ed as x0 = t, x1 = x, x2 = y, x3 = z using Cartesians. However, beause thetheory employs tensors and therefore gives relations valid in any system of oordinates (ovariane),the spae and time labels may be mixed up and ombined arbitrarily. Thus spae and time are notdistint entities. Also, the role of the speed of light  is to dimensionally transpose a quantity withthe dimension T to one with dimension L, so that all 4 of x� may be treated on the same footing.Partial derivatives with respet to the x� an be ombined to produe the Christo�el symbol ���,whih enables one to reate a ovariant derivative suh that the derivative of a vetor is now given byr�V� = �V�=�x� � ���V . From g��, and its derivatives, one an obtain the Rii tensor R��, theRii salar R and the Einstein tensor G�� � R�� � Rg��=2. The last is onstruted so as to havezero ovariant divergene: r�G�� = 0. These tensors enable us to look at the relationship betweengeometry and matter. Spei�ally, the Einstein tensor G��, an be oupled via a onstant � to theenergy-momentum tensor T�� that desribes properties of matter: G�� = �T��. These are Einstein's�eld equations. In the weak-�eld limit where g00 �= (1 + 2�=2) for a uid of density �, Einstein'sequations give bak Poisson's equation r2� = 4�G�. This presumes that the oupling onstant is� = 8�G=4, and shows that Einstein gravity ontains Newton gravity. However, Einstein's �eldequations have only been rigorously tested in the solar system and the binary pulsar, where thegravitational �eld exists essentially in empty spae or vauum. In this ase, T�� = 0 and the �eldequations G�� = 0 are equivalent to the simpler setR�� = 0 (�; � = 0� 3) : (1.1)These 10 relations serve in priniple to determine the 10 g��, and are the ones veri�ed by observations.Notwithstanding this, let us onsider the full equations for a perfet isotropi uid with density� and pressure p (i.e. there is no visosity, and the pressure is equal in the 3 spatial diretions).Then the energy-momentum tensor is T�� = (p+ �2)���� � pg�� where ��, are the 4-veloities (seebelow). This is onstruted so as to have zero divergene, and the equation of ontinuity and theequations of motion for the 3 spatial diretions are derived from the 4 omponents of r�T �� = 0.The ovariant derivative here atually treats the metri tensor as a onstant, so it is possible to adda term proportional to this to either the left-hand side or right-hand side of Einstein's equations.The former usage is traditional, so the full �eld equations are ommonly written12



R�� � Rg��2 + �g�� = 8�G4 �(p+ �2)���� � pg��� : (1.2)Here � is the osmologial onstant, and its modulus is known to be small. It orresponds in theweak-�eld limit to a fore per unit mass j�j2r=3 whih inreases with radius r from the entre of(say) the solar system, but is not observed to signi�antly a�et the orbits of the planets. However,it ould be insigni�ant loally but signi�ant globally, as implied by its dimensions (L�2) In thisregard, it is instrutive to move the � term over to the other side of the �eld equations and inorporateit into T�� as a \vauum" ontribution to the density and pressure:�� = �28�G p� = �28�G : (1.3)This \vauum uid" has the equation of state p� = ���2, and while �� , is small by laboratorystandards it ould in priniple be of the same order of magnitude as the material density of thegalaxies (10�29�10�31 gm m�3). Also, while j�j is onstrained by general relativity and observationsof the present universe, there are arguments onerning the stability of the vauum from quantum�eld theory whih imply that it ould have been larger in the early universe. But � (and G; ) aretrue onstants in the original version of general relativity, so models of quantum vauum transitionsinvolve step-like phase hanges (see e.g. Henriksen, Emslie and Wesson 1983). It should also be notedthat while matter in the present universe has a pressure that is positive or lose to zero (\dust"),there is in priniple no reason why in the early universe or other exoti situations it annot be takennegative. Indeed, any mirosopi proess whih auses the partiles of a uid to attrat eah otheran in a marosopi way be desribed by p < 0 (the vauum treated lassially is a simple example).In fat, it is lear that p and � in general relativity are phenomenologial, in the sense that they arelabels for unexplained partile proesses. It is also lear that the prime funtion of G and  is todimensionally transpose matter labels suh as p and � so that they math the geometrial objets ofthe theory.The pressure and density are intimately onneted to the motion of the uid whih they de-sribe. This an be appreiated by looking at the general equation of motion, in the form derived byRayhaudhuri, and the ontinuity or onservation equation:�R� 3R� = 2(w2 � �2)� 4�G2 (3p+ �2)_�2 = �(p+ �2)3 _RR : (1.4)Here R is the sale fator of a region of uid with vortiity w, shear �, and uniform pressure anddensity (see Ellis 1984: a dot denotes the total derivative with respet to time, and R should not beonfused with the Rii salar introdued above and should not be taken as implying the existene of aphysial boundary). From the �rst of (1.4) we see that the aeleration aused by a portion of the uiddepends on the ombination (3p+�2), so for mass to be attrative and positive we need (3p+�2) > 0.From the seond of (1.4), we see that the rate of hange of density depends on the ombination(p+�2), so for matter to be stable in some sense we need (p+�2) > 0. These inequalities, sometimesalled the energy onditions, should not however be onsidered sarosant. Indeed, gravitationalenergy is a slippery onept in general relativity, and there are several alternative de�nitions of\mass" (Hayward 1994). These go beyond the traditional onepts of ative gravitational mass asthe agent whih auses a gravitational �eld, passive gravitational mass as the agent whih feels it,and inertial mass as the agent whih measures energy ontent (Bonnor 1989). What the above shows13



is that in a uid-dynamial ontext, (3p + �2) is the gravitational energy density and (p + �2) isthe inertial energy density.For a uid whih is homogeneous and isotropi (� uniform), without vortiity or shear, Einstein'sequations redue to 2 relations ommonly alled after Friedmann:8�G� = 3R2 (k2 + _R2)� �2 ;8�Gp2 = � 1R2 (k2 + _R2 + 2 �RR) + �2 : (1.5)Here k = �1; 0 is the urvature onstant whih desribes the departure of the 3D part of spaetimefrom at Minkowski (spei�ed by g�� = ��� = diagonal +1, -1, -1, -1). There are many solutionsof (1.5) whih are more or less in agreement with osmologial observations. The simplest is theEinstein-de Sitter model. It has k = 0, � = 0 , p = 0, � = 1=6�Gt2 and a sale fator R(t) whihgrows as t2=3. However, it requires about 2 orders of magnitude more matter to be present than inthe visible galaxies, a topi we will return to in Setions 1.6 and 4.2. In general, solutions of (1.5)are alled Friedmann-Robertson-Walker (FRW), where the last two names refer to the workers whoderived the metri for these uniform osmologial models. This metri is ommonly given in twodi�erent oordinate systems, whose justi�ation has to do with whether one takes the global viewwherein all diretions in 3D spae are treated the same, or the loal view wherein quantities aremeasured from us as `entre'. Noting that the radial oordinates r are di�erent, the (3D) isotropiand non-isotropi forms of the metri are given by:ds2 = 2dt2 � R2(t)(1 + kr2=4)2 [dr2 + r2d
2℄ds2 = 2dt2 � R2(t)� dr2(1� kr2) + r2d
2� : (1.6)Here d
2 � d�2 + sin2 �d�2 de�nes the angular part of the metri in spherial polar oordinates. Aphoton whih moves radially in the �eld desribed by (1.6) is de�ned by ds = 0 with d� = d� = 0.Using the seond of (1.6) its (oordinate-de�ned) veloity is thendrdt = �(1� kr2)1=2R(t) : (1.7)Here the sign hoie orresponds to whether the photon is moving towards or away from us. Theimportant thing, though, is that the \speed" of the photon is not .This parameter, as noted in Setion 1.2, is ommonly regarded as de�ning an upper limit to thespeed of propagation of ausal e�ets. However, this interpretation is only true in the loal, speial-relativity limit. In the global, general-relativity ase the size of ausally-onneted regions is de�nedby the onept of the horizon. An exellent aount of this is given by its originator, Rindler (1977,p. 215). In the osmologial appliation, there are atually 2 kinds of horizon. An event horizonseparates those galaxies we an see from those we annot ever see even as t!1; a partile horizonseparates those galaxies we an see from those we annot see now at t = t0(�= 2 � 1010 yr). FRWmodels exist whih have both kinds of horizon, one but not the other, or neither. A model in thelatter ategory is that of Milne. (It has k = �1, � = 0, p = 0 and R(t) proportional to t, andwould solve the so-alled horizon problem posed by the 3K mirowave bakground did it not alsohave � = 0.) The distane to the partile horizon de�nes the size of that part of the universe whih14



is in ausal ommuniation with us. The distane an be worked out quite simply for any k if weassume � = p = 0 (Weinberg 1972, p. 489). In terms of Hubble's parameter now (H0 � _R0=R0) andthe deeleration parameter now (q0 = � �R0R0= _R02), the distanes are given by:dk=+1 = H0(2q0 � 1)1=2 os�1� 1q0 � 1� ; q0 > 12dk=0 = 2H0 = 3t0 ; q0 = 12dk=�1 = H0(1� 2q0)1=2 osh�1� 1q0 � 1� ; q0 < 12 : (1.8)Even for the middle ase, the Einstein-de Sitter model with at 3-spae setions, the distane to thehorizon is not t0. This on�rms what was noted above, and shows that in relativity the purpose of is merely to transpose a time to a length.Partiles with �nite as opposed to zero rest masses move not along paths with ds = 0 but alongpaths with s a minimum. In partile physis with a speial-relativity metri, the ation priniple forthe motion of a partile with mass m is ommonly written Æ[R mds℄ = 0. Assuming m = onstantand replaing ds by its general relativity analog using ds2 = g��dx�dx�, the variation leads to 4equations of motion: duds + ���u�u� = 0 : (1.9)This is the geodesi equation, and its 4 omponents serve in priniple to determine the 4-veloitiesu � dx=ds as funtions of the oordinates. We note that, in addition to the assumption that mis onstant, m does not appear in (1.9): general relativity is not a theory of fores but a theoryof aelerations. In pratie, (1.9) an only be solved algebraially for ertain solutions of the �eldequations. The latter in vauum are (1.1), and we note here that these an be obtained from anation via Æ[R R(�g)1=2d4x℄ = 0. Here g is the determinant of the metri tensor, whih with theonventional split of spaetime into time and spae has signature (+ - - -) so g is negative. The �eldequations with matter an also be obtained from an ation, but split into a geometrial part anda matter part. However, the split of a metri into time and spae parts, and the split of the �eldequations into geometri and matter parts, are to a ertain extent subjetive.1.4 Partile physisThis has evolved along di�erent lines than gravitation, and while general relativity is monolithi,the standard model of partile physis is omposite. Of relevane are the books by Ramond (1981),GriÆths (1987), and Collins, Martin and Squires (1989). The last is a good review of the onnetionsbetween partile physis and osmology, and also treats higher-dimensional theories of the types wewill examine in subsequent setions. However, the present setion is mainly onerned with standard4D partile physis as based on Lagrangians, and the oneptual di�erenes between gravitation andquantum theory.The material is ordered by omplexity: we onsider the equations of Maxwell, Shrodinger, Klein-Gordon, Dira, Proa and Yang-Mills; and then proeed to quantum hromodynamis and thestandard model (inluding Glashow-Salam-Weinberg theory). As before, there is an emphasis onfundamental onstants and the number of parameters required to make theory ompatible withobservation. 15



Classial eletromagnetism is desribed by a 4-potential A� and a 4-urrent J� (ovariant andontravariant quantities di�er now by at most a sign). Then Maxwell's equations are ontained inthe tensor relations �F ���x� = 4� J� ; F�� � �A��x� � �A��x� ; (1.10)and the identities �F���x + �F��x� + �F��x� = 0 (1.11)impliit in the de�nition of the Faraday tensor F��. However, Maxwell's equations may also beobtained by substituting the LagrangianL = � 116�F ��F�� � 1J�A� (1.11)in the Euler-Lagrange equations, whih give (1.10). Stritly, L here is a Lagrangian density andhas dimensions energy/volume, presuming we use the .g.s./e.s.u. system of units. These units alsoimply that �0 does not appear (see Setion 1.2). Thus  is the only onstant that �gures, in analogywith the original version of general relativity in whih only G=4 �gured (no osmologial onstant).This is onneted with the fat that these theories desribe photons and gravitons with exatly zerorest mass.Plank's onstant ~ omes into the �eld theory of partiles when the 3-momentum p and totalenergy E of a partile are replaed by spae and time operators that at on a wave-funtion 	. Thusthe presriptions p ! (~=i)r and E ! (i~)�=�t applied to the non-relativisti energy equationp2=2m + V = E (where m is rest mass and V is the potential energy) result in the Shrodingerequation � ~22mr2	+ V	 = i~�	�t : (1.12)The path Lagrangian for this is L = T �V in general, whih for a partile with harge q moving witha 3-veloity dx=dt�  in an eletromagneti �eld is L = (m=2)(dx=dt)2� (q=)A�dx�=dt. The pathation for this is S = R 21 Ldt, where the integral is between two points. The variation ÆS = 0 givesthe equations of motion of the partile between these two points, whih in lassial theory is a uniquepath. In quantum theory, there are non-unique paths, but the sum over paths �exp(iS=~) has theinterpretation that the modulus squared is the probability that the partile goes from position 1 to2. Clearly the phase S=~ has to be dimensionless, and this is why ~ appears in the sum over paths.Instead of inluding it in the latter thing, however, we ould instead use �exp(iS) and rede�ne theLagrangian to be L = m2~�dxdt�2 � q~A�dx�dt : (1.13)This has been pointed out by Hoyle and Narlikar (1974, p. 102; see also Ramond, 1981, p. 35).They go on to argue that sine the seond term in (1.13) ontains another q impliit in A�, it is theombination q2=~ that is important, and in it ~ an be absorbed into q2. Also, in the �rst term in(1.13) it is the ombination m=~ that is important, and in it ~ an be absorbed into m. Thus theLagrangian redues bak to the form given before.16



A similar presription to that above applied to the relativisti energy equation E2 � p22 = m24or p�p� = m22 for a freely-moving partile (V = 0) results in the Klein-Gordon equation� 12 �2��t2 +r2� = �m~ �2� : (1.14)Here � is a single salar �eld and the Lagrangian isL = 12��1 ���t �2 � (r�)2�� 12�m~ �2� : (1.15)Equations (1.14) and (1.15) desribe a spin-0 partile in at spaetime. We will onsider the gener-alization to urved spaetime below.Spin-1/2 partiles were desribed in another equation formulated by Dira, who `fatorized' theenergy relation p�p� = m22 with the help of four 4� 4 matries �. These latter are related to themetri tensor of Minkowski spaetime by the relation �� + �� = 2���. The Dira equation isi~� �	�x� �m	 = 0 : (1.16)Here 	 is a bi-spinor �eld, whih an be thought of as a 4-element olumn matrix (though it is not a4-vetor) in whih the upper two elements represent the two possible spin states of an eletron whilethe lower two elements represent the two possible spin states of a positron. The Lagrangian isL = i~	� �	�x� �m2		 : (1.17)Here 	 is the adjoint spinor de�ned by 	 � 	+0, where 	+ is the usual Hermitian or transposeonjugate obtained by transposing 	 from a olumn to a row matrix and omplex-onjugating itselements. The Lagrangian (1.17) is for a free partile. It is invariant under the global gauge or phasetransformation 	 ! ei�	 (where � is any real number), beause 	 ! e�i�	 and the exponentialsanel out in the ombination 		. But it is not invariant under the loal gauge transformation	 ! ei�(x)	 whih depends on loation in spaetime. If the priniple of loal gauge invariane isdesired, it is neessary to replae (1.17) byL = i~	� �	�x� �m2		� q	�	A� : (1.18)Here A� is a potential whih we identify with eletromagnetism and whih hanges under loal gaugetransformations aording to A� ! A� + ��=�x� where �(x�) is a salar funtion. In fat, wean say that the requirement of loal gauge invariane for the Dira Lagrangian (1.18) obliges theintrodution of the �eld A� typial of eletromagnetism.Atually the Lagrangian (1.18) should be even further extended by inluding a `free' term for thegauge �eld. In this regard, the transformation A� ! A� + ��=�x� leaves F�� unhanged, but nota term like A�A�. The appropriate term to add to (1.18) is therefore (�1=16�)F ��F��, so the fullDira Lagrangian is L = i~	� �	�x� �m2		� 116�F ��F�� � q	�	A� : (1.19)If we de�ne a urrent density J� � q(	�	), the last two terms give bak Maxwell's Lagrangian(1.11). The Lagrange density (1.19) desribes eletrons or positrons interating with an eletromag-17



neti �eld onsisting of massless photons. However, a term like the one we just disarded (A�A�)may be aeptable in a theory of massive gauge partiles. Indeed, a �eld derived from a vetorpotential A� assoiated with a partile of �nite rest mass m is desribed by the Proa equation�F ���x� + �m~ �2A� = 0 : (1.20)This desribes a spin-1 partile suh as a massive photon, and an be obtained from the LagrangianL = � 116�F ��F�� + 18��m~ �2A�A� : (1.21)Again we see the ombination m=~, so ~ may be absorbed here if so desired as it has been elsewhere.If we onsider two 4-omponent Dira �elds, it an be shown that a loally gauge-invariant La-grangian an only be obtained if we introdue three vetor �elds (A1�, A2�, A3�). These an be thoughtof as a kind of 3-vetor A�. It is also neessary to hange the de�nition of F��, used above. The 3omponents of the new quantity (F 1��, F 2��, F 3��) an again be thought of as a kind of vetor, wherenow F�� � [�A�=�x� � �A�=�x� � (2q=~)(A� �A�)℄. Further, the three Pauli matries (�1, �2, �3)an be regarded as a vetor � . Then with dot produts between vetors de�ned in the usual way,the Lagrangian isL = i~	� �	�x� �m2		� 116�F �� � F�� � (q	��	) �A� : (1.22)Here 	 an be thought of as a olumnmatrix with elements 	1 and 	2, eah of whih is a 4-omponentDira spinor. The latter still desribe spin-1/2 partiles of mass m (where we have assumed bothpartiles to have the same mass for simpliity), and they interat with three gauge �elds A1�, A2�,A3� whih by gauge invariane must be massless. The kind of gauge invariane obeyed by (1.22) isatually more omplex than that involving global and loal phase transformations with ei� onsideredabove. There 	 was a single spinor, whereas here 	 is a 2-spinor olumn matrix. This leads us toonsider a 2� 2 matrix whih we take to be unitary (U+U = 1). In fat the �rst two terms in (1.22)are invariant under the global transformation 	! U	, beause 	! 	U+ so the ombination 		is invariant. Just as any omplex number of modulus 1 an be written as ei� with � real, any unitarymatrix an be written U = e1H with H Hermitian (H+ = H). Sine H is a 2� 2 matrix it involves4 real numbers, say � and a1, a2, a3 whih an be regarded as the omponents of a 3-vetor a. Asbefore, let � be the 3-vetor whose omponents are three 2�2 Pauli matries, and let 1 stand for the2� 2 unit matrix. Then without loss of generality we an write H = �1 + � � a, so U = ei�ei� �a. The�rst fator here is the old phase transformation. The seond is a 2�2 unitary matrix whih is speialin that the determinant is atually 1. Thus 	 ! ei� �a	 is a global speial-unitary 2-parameter, orSU(2), transformation. It should be realled that this global invariane only involves the �rst twoterms of the Lagrangian (1.22), whih resemble the Lagrangian (1.17) of Dira. The passage to loalinvariane along lines similar to those onsidered above leads to the other terms in the Lagrangian(1.22) and was made by Yang and Mills.The full Yang-Mills Lagrangian (1.22) is invariant under loal SU(2) gauge transformations, andleads to �eld equations that were originally supposed to desribe two equal-mass spin-1/2 partilesinterating with three massless spin-1 (vetor) partiles. In this form the theory is somewhat unre-alisti, but still useful. For example, if we drop the �rst two terms in (1.22) we obtain a Lagrangianfor the three gauge �elds alone whih leads to an interesting lassial-type �eld theory that resem-bles Maxwell eletrodynamis. This orrespondene beomes lear if like before we de�ne urrentsJ� � q(	��	), whereby the last two terms in (1.22) give a gauge-�eld Lagrangian18



L = � 116�F �� � F�� � 1J� � A� : (1.23)This losely resembles the Maxwell Lagrangian (1.11). But of ourse (1.23) gives rise to a on-siderably more ompliated theory, solutions of whih have been reviewed by Ator (1979). Someof these represent magneti monopoles, whih have not been observed. Some represent instantonsand merons, whih are hypothetial partiles that tunnel between topologially distint vauum re-gions. Tunneling an in priniple be important osmologially. For example, Vilenkin (1982) hassuggested that a ertain type of instanton tunneling to de Sitter spae from nothing an give birthto an inationary universe. However, it is doubtful if the kinds of partiles predited by pure SU(2)Yang-Mills theory will ever have pratial appliations. The real importane of this theory is that itshowed it was feasible to use a symmetry group involving non-ommuting 2�2 matries to onstruta non-Abelian gauge theory. This idea led to more suessful theories, notably one for the stronginteration based on SU(3) olour symmetry.Quantum hromodynamis (QCD) is desribed by 3 oloured Dira spinors that an be denoted	red, 	blue, 	green and 8 gauge �elds given by a kind of 8-vetor A�. Eah of 	r, 	b, 	g is a 4-omponent Dira spinor, and it is onvenient to regard them as the elements of a olumn matrix 	.This desribes the olour states of a massive spin-1/2 quark. The 8 omponents of A�, are assoiatedwith the 8 Gell-Mann matries (�1�8), whih are the SU(3) equivalents of the Pauli matries ofSU(2), and desribe massless spin-1 gluons. The Lagrangian for QCD an be onstruted by addingtogether 3 Dira Lagrangians like (1.17) above (one for eah olour), insisting on loal SU(3) gaugeinvariane (whih brings in the 8 gauge �elds), and adding in a free gauge-�eld term (using F�� asde�ned above for the original Yang-Mills theory). The omplete Lagrangian isL = i~	� �	�x� �m2		� 116�F �� � F�� � (q	��	) � A� : (1.24)This resembles (1.22) above. However, the eletri harge of a quark needs to be a fration of e inorder to aount for the ommon hadrons as quark omposites. And partile physis is best desribedby 6 quarks with di�erent avours (d, u, s, , b, t) and di�erent masses m. This means we reallyneed 6 versions of (1.24) with di�erent masses. A gluon does not arry eletri harge, but it doesarry olour harge. This is unlike its analogue the photon in eletrodynamis, allowing bound gluonstates (glueballs) and making hromodynamis generally quite ompliated.We do not need to go into the intriaies of QCD, espeially sine good reviews are available(Ramond 1981; Llewellyn Smith 1983; GriÆths 1987; Collins, Martin and Squires 1989). But aouple of points related to harges and masses are relevant to our disussion. In the ase of eletronsinterating via photons, the Dira Lagrangian and the fat that � � e2=~ �= 1=137 is small allowsperturbation analysis to be used to produe very aurate models. Indeed, quantum eletrodynamis(QED) gives preditions that are in exellent agreement with experiment. However, the ouplingparameter whose asymptoti value is the traditional �ne-struture onstant is atually energy ordistane dependent. As mentioned in Setion 1.2, this is ommonly asribed to vauum polarization.Thus, a positive harge (say) surrounded by virtual eletrons and positrons tends to attrat theformer and repel the latter. (Virtual partiles do not obey Heisenberg's unertainty relation andin modern quantum �eld theory the vauum is regarded as full of them.) There is therefore asreening proess, whih means that the e�etive value of the embedded harge (and �) inreasesas the distane dereases. In analogy with QED, there is a similar proess in QCD, but due to thedi�erent nature of the interation the oupling parameter dereases as the distane dereases. Thisis the origin of asymptoti freedom, whose onverse is that quarks in (say) a proton feel a strongrestoring fore if they move outwards and are in fat on�ned. In addition to the variable nature ofoupling `onstants' and harges, the masses in QCD are also not what they appear to be. The mwhih appears in a Lagrangian like (1.24) is not really a given parameter, but is believed to arise19



from the spontaneous symmetry breaking whih exists when a symmetry of the Lagrangian is notshared by the vauum. Thus a manifestly symmetri Lagrangian with massless gauge-�eld partilesan be rewritten in a less symmetri form by rede�ning the �elds in terms of utuations about apartiular ground state of the vauum. This results in the gauge-�eld partiles beoming massiveand in the appearane of a massive salar �eld or Higgs partile. In QCD. the quarks are initiallytaken to be massless, but if they have Yukawa-type ouplings to the Higgs partile then they aquiremasses. The Higgs mehanism in QCD, however, is really imported from the theory of the weakinteration, and has been mentioned here to undersore that the masses of the quarks are not reallyfundamental parameters.The theory of the weak interation was originally developed by Fermi as a way of aounting forbeta deay, but is today mainly assoiated with Glashow, Weinberg and Salam who showed thatit was possible to unify the weak and eletromagneti interations (for reviews see Salam 1980 andWeinberg 1980). As it is formulated today, the theory of the weak interation involves mediation by3 very massive intermediate vetor (spin-1) bosons, two of whih (W�) are eletrially harged andone of whih (Z0) is neutral. These an be ombined with the photon of eletromagnetism via thesymmetry group SU(2)
 U(1), whih is however spontaneously broken by the mehanism outlinedin the preeding paragraph. Atually, the massive Z0 and the massless photon are ombinations ofstates that depend on a weak mixing angle �w, whose value is diÆult to alulate from theory butis �w �= 29o from experiment. The theory of the weak interation, like QED and QCD, involves aoupling parameter whih is not onstant.What we have been disussing in the latter part of this setion are parts of the standard model ofpartile physis, whih symbolially uni�es the eletromagneti, weak and strong interations via thesymmetry group U(1)
 SU(2)
 SU(3). An appealing feature of this theory is that with inreasingenergy the eletromagneti oupling inreases while the weak and strong ouplings derease, suggest-ing that they ome together at some unifying energy. This, however, is not known: it is probablyof order 1016 GeV, but ould be as large as the Plank mass of order 1019 GeV (see Weinberg 1983;Llewellyn Smith 1983; Ellis 1983; Kibble 1983; GriÆths 1987, p. 77; Collins, Martin and Squires1989, p. 159). Also, there are unertainties in the theory, notably to do with the QCD setor wherethe numbers of olors and avors are onventionally taken as 3 and 6 respetively but ould bedi�erent. This means that while in the onventional model there are 6 quark masses and 6 leptonmasses, there ould be more. In fat, if we inlude ouplings and other things, there are. at least20 parameters in the theory (Ellis 1983). One might hope to redue this by using a simple unifyinggroup for U(1), SU(2) and SU(3). but the minimal example of SU(5) does not atually help muhin this regard. And then there is the perennial question: What about gravity?1.5 Kaluza-Klein theoryThe idea that the world may have more than 4 dimensions is due to Kaluza (1921), who with abrilliant insight realized that a 5D manifold ould be used to unify Einstein's theory of generalrelativity (Setion 1.3) with Maxwell's theory of eletromagnetism (Setion 1.4). After some delay,Einstein endorsed the idea, but a major impetus was provided by Klein (1926). He made theonnetion to quantum theory by assuming that the extra dimension was mirosopially small,with a size in fat onneted via Plank's onstant h to the magnitude of the eletron harge e(Setion 1.2). Despite its elegane, though, this version of Kaluza-Klein theory was largely elipsedby the explosive development �rst of wave mehanis and then of quantum �eld theory. However,the development of partile physis led eventually to a resurgene of interest in higher-dimensional�eld theories as a means of unifying the long-range and short-range interations of physis. Thus didKaluza-Klein 5D theory lay the foundation for modern developments suh as 11D supergravity and10D superstrings (Setion 1.6). In fat, there is some ambiguity in the sope of the phrase \Kaluza-20



Klein theory". We will mainly use it to refer to a 5D �eld theory, but even in that ontext there areseveral versions of it. The literature is onsequently enormous, but we an mention the onfereneproeedings edited by De Sabbata and Shmutzer (1983), Lee (1984) and Appelquist, Chodos andFreund (1987). A reent omprehensive review of all versions of Kaluza-Klein theory is the artile byOverduin and Wesson (1997a). The latter inludes a short aount of what is referred to by di�erentworkers as non-ompati�ed, indued-matter or spae-time-matter theory. Sine this is the subjetof the following hapters, the present setion will be restrited to a summary of the main features oftraditional Kaluza-Klein theory.This theory is essentially general relativity in 5D, but onstrained by two onditions. Physially,both have the motivation of explaining why we pereive the 4 dimensions of spaetime and (ap-parently) do not see the �fth dimension. Mathematially, they are somewhat di�erent, however.(a) The so-alled `ylinder' ondition was introdued by Kaluza, and onsists in setting all partialderivatives with respet to the �fth oordinate to zero. It is an extremely strong onstraint that hasto be applied at the outset of alulation. Its main virtue is that it redues the algebrai omplexityof the theory to a manageable level. (b) The ondition of ompati�ation was introdued by Klein,and onsists in the assumption that the �fth dimension is not only small in size but has a losedtopology (i.e. a irle if we are only onsidering one extra dimension). It is a onstraint that may beapplied retroatively to a solution. Its main virtue is that it introdues periodiity and allows one touse Fourier and other deompositions of the theory.There are now 15 dimensionless potentials, whih are the independent elements in a symmetri5 � 5 metri tensor gAB (A; B = 0 � 4: ompare setion 1.3). The �rst 4 oordinates are thoseof spaetime, while the extra one x4 = l (say) is sometimes referred to as the \internal" oordinatein appliations to partile physis. In perfet analogy with general relativity, one an form a 5DRii tensor RAB, a 5D Rii salar R and a 5D Einstein tensor GAB � RAB � RgAB=2. The �eldequations would logially be expeted to be GAB = kTAB with some appropriate oupling onstantk and a 5D energy-momentum tensor. But the latter is unknown, so from the time of Kaluza andKlein onward muh work has been done with the `vauum' or `empty' form of the �eld equationsGAB = 0. Equivalently, the de�ning equations areRAB = 0 (A; B = 0� 4) : (1.25)These 15 relations serve to determine the 15 gAB, at least in priniple.In pratie, this is impossible without some starting assumption about gAB. This is usuallyonneted with the physial situation being investigated. In gravitational problems, an assumptionabout gAB = gAB(x) is ommonly alled a hoie of oordinates, while in partile physis it isommonly alled a hoie of gauge. We will meet numerous onrete examples later, where given thefuntional form of gAB(x) we will alulate the 5D analogs of the Christo�el symbols �CAB whih thengive the omponents of RAB (Chapters 2-4). Kaluza was interested in eletromagnetism, and realizedthat gab an be expressed in a form that involves the 4-potential A� that �gures in Maxwell's theory.He adopted the ylinder ondition noted above, but also put g44 = onstant. We will do a generalanalysis of the eletromagneti problem later (Chapter 5), but here we look at an intermediate asewhere gAB = gAB(x�), g44 = ��2(x�). This illustrates well the sope of Kaluza-Klein theory, andhas been worked on by many people, inluding Jordan (1947, 1955). Bergmann (1948), Thiry (1948),Lessner (1982), and Liu and Wesson (1997). The oordinates or gauge are hosen so as to write the5D metri tensor in the formgAB = � (g�� � �2�2A�A�) ���2A����2A� ��2 � ; (1.26)where � is a oupling onstant. Then the �eld equations (1.25) redue to21



G�� = �2�22 T�� � 1��r�r��� g�����r�F�� = �3r��� F���� = ��2�34 F��F �� : (1.27)Here G�� and F�� are the usual 4D Einstein and Faraday tensors (see setions 1.3 and 1.4 re-spetively), and T��, is the energy-momentum tensor for an eletromagneti �eld given by T�� =(g��FÆF Æ=4� F �F�)=2. Also � � g��r�r� is the wave operator, and the summation onventionis in e�et. Therefore we reognize the middle member of (1.27) as the 4 equations of eletromag-netism modi�ed by a funtion, whih by the last member of (1.27) an be thought of as dependingon a wave-like salar �eld. The �rst member of (1.27) gives bak the 10 Einstein equations of 4Dgeneral relativity, but with a right-hand side whih in some sense represents energy and momentumthat are e�etively derived from the �fth dimension. In short, Kaluza-Klein theory is in general auni�ed aount of gravity, eletromagnetism and a salar �eld.Kaluza's ase g44 = ��2 = �1 together with the identi�ation � = �16�G=4�1=2 makes (1.27)read G�� = 8�G4 T��r�F�� = 0 : (1.28)These are of ourse the straight Einstein and Maxwell equations in 4D, but derived from vauumin 5D, a onsequene whih is sometimes referred to as the Kaluza-Klein \mirale". However, theserelations involve by (1.27) the hoie of eletromagneti gauge F��F �� = O and have no ontributionfrom the salar �eld. The latter ould well be important, partiularly in appliation to partilephysis. In the language of that subjet, the �eld equations (1.25) of Kaluza-Klein theory desribea spin-2 graviton, a spin-1 photon and a spin-0 boson whih is thought to be onneted with howpartiles aquire mass. The �eld equations an also be derived from a 5D ation Æh R R(�g)1=2d5xi =0, in a way analogous to what happens in 4D Einstein theory.It is also possible to put Kaluza-Klein theory into formal orrespondene with other 4D theories,notably the Brans-Dike salar-tensor theory (see Overduin and Wesson 1997a). This theory issometimes ast in a form where the salar �eld is e�etively disguised by putting the funtionaldependene into G, the gravitational `onstant'. In this regard it belongs to a lass of 4D theories,whih inludes ones by Dira, Hoyle and Narlikar and Canuto et al., where the onstants are allowedto vary with osmi time (see Wesson 1978 and Barbour and P�ster 1995 for reviews). However, itshould be stated with strength that Kaluza-Klein theory is essentially 5D, and trying to ast it into4D form is tehnially awkward. It should also be noted that the reasons for treating 4D fundamentalonstants in this way are oneptually obsure.1.6 Supergravity and superstringsThese are based on the idea of supersymmetry, wherein eah boson (integral spin) is mathed witha fermion (half integral spin). Thus the partile whih is presumed to mediate lassial gravity (the22



graviton) has a partner (the gravitino). This kind of symmetry is natural, insofar as partile physisneeds to aount for both bosoni and fermioni matter �elds. But it is also attrative beause it leadsto a anellation of the enormous zero-point �elds whih otherwise exist but whose energy densityis not manifested in the urvature of spae (this is related to the so-alled osmologial onstantproblem, whih is disussed elsewhere). The literature on supergravity and superstrings is diverse,but we an mention the review artiles by Witten (1981) and Du� (1996); and the books by West(1986) and Green, Shwan and Witten (1987). The status of the eletromagneti zero-point �eld hasbeen disussed by Wesson (1991). There is an obvious onnetion between 5D Kaluza-Klein theory,11D supergravity and 10D superstrings. But while the former is more-or-less worked out, the latterare still in a state of development with an unertain prognosis where it omes to their relevane tothe real world. For this reason, and also beause supersymmetry lies outside the sope of the rest ofthis work, we will ontent ourselves with a short history.Supersymmetri gravity or supergravity began life as a 4D theory in 1976 but quikly made thejump to higher dimensions (\Kaluza-Klein supergravity"). It was partiularly suessful in 11D,for three prinipal reasons. First, Nahm showed that 11 was the maximum number of dimensionsonsistent with a single graviton (and an upper limit of two on partile spin). This was followedby Witten's proof that 11 was also the minimum number of dimensions required for a Kaluza-Kleintheory to unify all the fores in the standard model of partile physis (i.e. to ontain the gauge groupsof the strong SU(3) and eletroweak SU(2)
U(1) interations). The ombination of supersymmetrywith Kaluza-Klein theory thus appeared to uniquely �x the dimensionality of the world. Seond,whereas in lower dimensions one had to hoose between several possible on�gurations for the matter�elds, Cremmer et al. demonstrated in 1978 that in 11D there is a single hoie onsistent withthe requirements of supersymmetry (in partiular, that there be equal numbers of Bose and Fermidegrees of freedom). In other words, while a higher-dimensional energy-momentum tensor was stillrequired, its form at least appeared somewhat natural. Third, Freund and Rubin showed in 1980that ompati�ation of the 11D model ould our in only two ways: to 7 or 4 ompat dimensions,leaving 4 (or 7, respetively) marosopi ones. Not only did 11D spaetime appear to be speiallyfavored for uni�ation, but it also split perfetly to produe the observed 4D world. (The otherpossibility, of a marosopi 7D world, ould however not be ruled out, and in fat at least one suhmodel was onstruted as well.) Buoyed by these three suesses, 11D supergravity appeared set bythe mid-1980s as a leading andidate for the hoped-for \theory of everything".Unfortunately, ertain diÆulties have dampened this initial enthusiasm. For example, the om-pat manifolds originally envisioned by Witten (those ontaining the standard model) turn out notto generate quarks or leptons, and to be inompatible with supersymmetry. Their most suessfulreplaements are the 7-sphere and the \squashed" 7-sphere, desribed respetively by the symme-try groups SO(8) and SO(5) 
 SU(2). But these groups do not ontain the minimum symmetryrequirements of the standard model [SU(3)
 SU(2)
 U(1)℄. This is ommonly reti�ed by addingmatter-related �elds, the \omposite gauge �elds", to the 11D Lagrangian. Another problem is thatit is very diÆult to build hirality (neessary for a realisti fermion model) into an 11D theory. Avariety of remedies have been proposed for this, inluding the ommon one of adding even more gauge�elds, but none has been universally aepted. It should also be mentioned that supergravity theoryis marred by a large osmologial onstant in 4D, whih is diÆult to remove even by �ne-tuning.Finally, quantization of the theory inevitably leads to anomalies.Some of these diÆulties an be eased by desending to 10 dimensions: hirality is easier toobtain, and many of the anomalies disappear. However, the introdution of hiral fermions leads tonew kinds of anomalies. And the primary bene�t of the 11D theory - its uniqueness - is lost: 10Dis not speially favored, and the theory does not break down naturally into 4 marosopi and 6ompat dimensions. (One an still �nd solutions in whih this happens, but there is no reason whythey should be preferred.) In fat, most 10D supergravity models not only require ad ho higher-dimensional matter �elds to ensure proper ompati�ation, but entirely ignore gauge �elds arising23



from the Kaluza-Klein mehanism (i.e. from symmetries of the ompat manifold). A theory whihrequires all gauge �elds to be e�etively put in by hand an hardly be onsidered natural.A breakthrough in solving the uniqueness and anomaly problems of 10D theory oured whenGreen and Shwarz and Gross et al. showed that there were 2 (and only 2) 10D supergravity modelsin whih all anomalies ould be made to vanish: those based on the groups SO(32) and E8 
 E8,respetively. One again, extra terms (known as Chapline-Manton terms) had to be added to thehigher-dimensional Lagrangian. This time, however, the addition was not ompletely arbitrary; theextra terms were those whih would appear anyway if the theory were a low-energy approximationto ertain kinds of supersymmetri string theory.Supersymmetri generalizations of strings, or superstrings, are far from being understood. How-ever, they have some remarkable virtues. For example, they retain the appeal of strings, wherein apoint partile is replaed by an extended struture, whih opens up the possibility of an anomaly-freeapproah to quantum gravity. (They do this while avoiding the generi predition of tahyons, whihplagued the old string theories.) Also, it is possible to make onnetions between ertain superstringstates and extreme blak holes. (This may help resolve the problem of what happens to the informa-tion swallowed by lassial singularities, whih has been long standing in general relativity.) It is truethat, for a while, there was thought to be something of a uniqueness problem for 10D superstrings,in that the groups SO(32) and E8 
 E8 admit �ve di�erent string theories between them. But thisdiÆulty was addressed by Witten, who showed that it is possible to view these �ve theories as as-pets of a single underlying theory, now known as M-theory (for \Membrane"). The low-energy limitof this new theory, furthermore, turns out to be 11D supergravity. So it appears that the preferreddimensionality of spaetime may after all be 11, at least in regard to higher-dimensional theorieswhih are ompati�ed.Supersymmetri partiles suh as gravitinos and neutralinos, if they exist, ould provide the darkor hidden matter neessary to explain the dynamis of galaxies and bring osmologial observationsinto line with the simplest 4D osmologial models (see Setion 1.3). However, suh `dark' matteris probably not ompletely dark, beause the partiles onerned are unstable to deay in realisti(non-minimal) supersymmetri theories, and will ontribute photons to the intergalati radiation�eld. Observations of the latter an be used to onstrain supersymmetri weakly interating massivepartiles (WIMPS). Thus gravitinos and neutralinos are viable dark-matter andidates if they havedeay lifetimes greater than of order 1011 yr and 109 yr respetively (Overduin and Wesson 1997b). Inthis regard, they are favored over non-supersymmetri andidates suh as massive neutrinos, axionsand a possible deaying vauum (Overduin and Wesson 1997, 1992). There are other andidates,but learly the identi�ation of dark matter is an important way of testing supersymmetry.1.7 ConlusionThis hapter has presented a potted aount of theoretial physis as it exists at the present. Wehave learned ertain things, namely: that fundamental onstants are not (Setion 1.2); that generalrelativity desribes gravity exellently in urved 4D spae (Setion 1.3); that partile physis workswell as a omposite theory in at 4D spae (Setion 1.4); that Kaluza-Klein theory in its originalversion uni�es gravity and eletromagnetism in urved 5D spae (Setion 1.5); and that supergravityand superstrings provide possible routes to new physis in 11D and 10D. So, where do we go fromhere?There is no onsensus answer to this, but let us onsider the following line of reasoning. Physisis a desription of the world as we pereive it (Eddington). In order to give a logial and oherentaount of the maximum number of physial phenomena, we should presumably use the most ad-vaned mathematial tehniques. For the last entury through to now, this implies that we should24



use geometry (Einstein, Riemann). The �eld equations of general relativity have no mathematialonstraint as regards the number of dimensions in whih they should be applied the hoie followsfrom physis and depends on what we wish to explain. Also, there are ertain ways of embeddinglower-dimensional spaes with ompliated struture in higher-dimensional spaes with simple stru-ture, inluding at ones (Campbell, Eisenhart: see the next hapter). So the question of how we anbest desribe gravity and partile physis is to a ertain extent a question of algebrai tehnology.Now we might expet that the many quantum properties of elementary partiles should be desribedby a spae with a large number of dimensions. However, the lassial properties of matter should beable to be handled by a spae with a moderate number of dimensions.The rest of this treatise is a ompilation of (mainly tehnial) results whih demonstrates thisview. It will be seen that properties of matter suh as the density and pressure of a uid, as well asthe rest mass and eletri harge of a partile, an be derived from 5D geometry. This may soundsurprising, but there are important di�erenes between what we do now and what others have donebefore. The theory we will be working with is obviously not Einstein general relativity, sine it isnot 4D but 5D in nature. But it is not Kaluza-Klein either, beause we do not invoke the hobblingylinder ondition typial of that theory, preferring instead to examine an unrestrited and rih 5Dalgebra. What we do in the following hapters also di�ers from previous work in that we do not needan expliit energy-momentum tensor: it will be seen that matter an be derived from geometry.
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Chapter 2Indued-Matter Theory\To make physis, the geometry should bite"(John Wheeler, Prineton, 1984)2.1 IntrodutionWe import from the preeding hapter two important and onneted ideas. First, as realized byseveral workers, the so-alled fundamental onstants like , G and h have as their main purposethe transposition of physial dimensions. Thus, a mass an be regarded as a length; and physialquantities suh as density and pressure an be regarded as having the same dimensions as thegeometrial quantities that �gure in general relativity. Seond, physial quantities should be given ageometri interpretation, as envisaged by many people through time, inluding Einstein who wishedto transmute the \base wood" of physis to the \marble" of geometry. An early attempt at thiswas made by Kaluza and Klein, who extended general relativity from 4 to 5 dimensions, but alsoapplied severe restritions to the geometry (the onditions of ylindriity and ompati�ation). Inthis hapter, we will draw together results whih have appeared in reent years whih show that itis possible to interpret most properties of matter as the result of 5D Riemannian geometry, wherehowever the latter allows dependene on the �fth oordinate and does not make assumptions aboutthe topology of the �fth dimension.This indued-matter theory has seen most work in 3 areas: (a) The ase of uniform osmologialmodels is easiest to treat beause of the high degree of symmetry involved, and is very instrutive. (b)The soliton ase is more ompliated, but important beause 5D solitons are the analogs of isolated 4Dmasses, and the 5D lass of soliton solutions ontains the unique 4D Shwarzshild solution. () Thease of neutral matter an be treated quite generally, and lays the foundation for many appliationswhere eletromagneti e�ets are not involved. After an outline of geometri feasibility (Setion 2.2)we will give the main theoretial results in eah of the aforementioned areas (Setions 2.3, 2.4, 2.5).We defer the main observational impliations to later hapters. Our onlusion (Setion 2.6) will bethat one extra dimension is enough to explain the phenomenologial properties of lassial matter.From here on, we will absorb the fundamental onstants , G and h via a hoie of units thatrenders their magnitudes unity. We will use the metri signature with diagonal = (+ � � � �),where the last hoie will be seen to depend on the physial appliation and not ause any problemwith ausality. Also, we will label 5D quantities with upper-ase Latin letters (A = 0 � 4) and 4Dquantities with lower-ase Greek letters (� = 0 � 3). If there is a hane of onfusion between the4D part of a 5D quantity and the 4D quantity as onventionally de�ned, we will use a hat to denotethe former and the straight symbol to denote the latter.31



2.2 A 5D embedding for 4D matterThe 5D �eld equations for apparent vauum in terms of the Rii tensor areRAB = 0 : (2.1)Equivalently, in terms of the 5D Rii salar and the 5D Einstein tensor GAB � RAB�RgAB=2, theyare GAB = 0 : (2.2)By ontrast, the 4D �eld equations with matter are given by Einstein's relations of general relativity:G�� = 8�T�� : (2.3)The entral thesis of indued-matter theory is that (2.3) are a subset of (2.2) with an e�etive orindued 4D energy-momentum tensor T�� whih ontains the lassial properties of matter.That this is so will beome apparent below when we treat several ases suggested by physis.However, it is also possible to approah the subjet through algebra; and while results in the latter�eld were subsequent, they are general and an be summarized here. Thus, it is a diret onsequeneof a little-known theorem by Campbell that any analyti N-dimensional Riemannian manifold anbe loally embedded in an (N+1)-dimensional Rii-at (RAB = 0) Riemannian manifold (Romero,Tavakol and Zalaletdinov 1996). This is of great importane for establishing the generality of theproposal that 4D �eld equations with soures an be loally embedded in 5D �eld equations withoutsoures. And it an be used to study lower-dimensional (N < 4) gravity, whih may be easier toquantize than general relativity (Rippl, Romero and Tavakol 1995). It an also be employed to �ndnew lasses of 5D solutions (Lidsey et al. 1997). Some of the latter have the remarkable propertythat they are 5D at but ontain 4D subspaes that are urved and orrespond to known physialsituations (Wesson 1994; Abolghasem, Coley and MManus 1996). The latter do not, though, inludethe 4D Shwarszhild solution, whih an only be embedded in a at manifold with N � 6 (Shoutenand Struik 1921; Tangherlini 1963; for general results in embeddings see Campbell 1926; Eisenhart1949; Kramer et al. 1980). However, the priniple is lear: urved 4D physis an be embedded inurved or at 5D geometry, and we proeed to study 3 prime ases of this.2.3 The osmologial aseThere are many exat solutions known of (2.1) that are of osmologial type, meaning that themetri resembles that of Robertson-Walker and the dynamis is governed by equations like thoseof Friedmann (see Setion 1.3). However, most of these do not involve dependene on the extraoordinate l and are from the indued-matter viewpoint very restrited. Thus while we will use oneof these solutions below, we will onentrate on the muh more signi�ant solutions of Pone de Leon(1988). He found several lasses of exat solutions of (2.1) whose metris are separable and redueto the standard 4D RW ones on the hypersurfaes l = onstants. The indued matter and otherproperties assoiated with the most physial lass of Pone de Leon solutions were worked out byWesson (1992a). Sine then, many other osmologial solutions and their assoiated matter propertieshave been derived by various workers (see, e.g., Chatterjee and Sil 1993; Chatterjee, Panigrahi andBanerjee 1994; Liu and Wesson 1994; Liu and Mashhoon 1995; Billyard and Wesson 1996). In whatfollows, we will illustrate the transition from the 5D equations (2.1), (2.2) for apparent vauum tothe 4D equations (2.3) with matter, by using simple but realisti solutions.32



It is onvenient to onsider a 5D metri with interval given bydS2 = e�dt2 � e!(dr2 + r2d
2)� e�dl2 : (2.4)Here the time oordinate x0 = t and the spae oordinates x123 = r��(d
2 � d�2 + sin2�d�2) havebeen augmented by the new oordinate x4 = l. The metri oeÆients �, !, and � will depend ingeneral on both t and l, partial derivatives with respet to whih will be denoted by an overdot andan asterisk, respetively. Components of the Einstein tensor in mixed form are:G00 = �e���� 3 _!24 � 3 _! _�4 � + e���3!��2 + 3!�22 � 3��!�4 �G04 = e���3!��2 + 3 _!!�4 � 3 _!��4 � 3!� _�4 �G11 = G22 = G33 = �e����! + 3 _!24 + ��2 + _�24 + _! _�2 � _� _!2 � _� _�4 �+e���!�� + 3!�24 + ���2 + ��24 + !���2 � ��!�2 � ����4 �G44 = �e���3�!2 + 3 _!22 � 3 _� _!4 � + e���3!�24 + 3!���4 � : (2.5)These are 5D omponents. We wish to math the terms in (2.5) with the omponents of the usual 4Dperfet-uid energy-momentum tensor. This is T�� = (p + �)���� � pg��, where �� � dx�=ds, andfor our ase has omponents T 00 = �, T 11 = �p for the density and pressure. Following the philosophyoutlined above, we simply identify the new terms (due to the �fth dimension) in G00 with �, and thenew terms in G11 with p. Then, olleting terms whih depend on the new metri oeÆient � orderivatives with respet to the new oordinate l, we de�ne8�� � �34e�� _! _�+ 32e���!��!�2 � ��!�2 �8�p � e��� ��2 + _�24 + _! _�2 � _� _�4 ��e���!�� + 3!�24 + ���2 + ��24 + !���2 � ��!�2 � ����4 � : (2.6)These are suggested identi�ations for 4D properties of matter in terms of 5D properties of geometry.To see if they make physial sense to this point, we ombine (2.6) and (2.5) with the �eld equationsGAB = 0 of (2.2). There omesG00 = �34e�� _!2 + 8�� = 0G04 = e���3!��2 + 3 _!!�4 � 3 _!��4 � 3!� _�4 � = 0G11 = �e����! + 3 _!24 � _� _!2 �� 8�p = 0G44 = �e���3�!2 + 3 _!22 � 3 _� _!4 �+ e���3!�24 + 3!���4 � = 0 : (2.7)33



We see from the �rst of these that � must be positive; and from the third that p ould in priniple benegative, as needed in lassial desriptions of partile prodution in quantum �eld theory (see, e.g.,Brout, Englert and Gunzig 1978; Guth 1981; and Setion 1.3). To make further progress, however,we need expliit solutions of the �eld equations.A simple solution of (2.1) or (2.2) that is well known but does not depend on l has � = 0, ! = log t,� = � log t in (2.4), whih now readsdS2 = dt2 � t(dr2 + r2d
2)� t�1dl2 : (2.8)This has a shrinking �fth dimension, and from (2.6) or (2.7) density and pressure given by 8�� =3=4t2, 8�p = 1=4t2. If these are ombined to form the gravitational density (�+ 3p) and the properradial distane R � e!=2r is introdued, then the mass of a portion of the uid isM = 4�R3(�+3p)=3.The �eld equations then ensure that �R = �M=R2 is obtained as usual for the law of motion. Similarly,the usual �rst law of thermodynamis is reovered by writing dE+pdV = 0 as (�e3!=2)�+p(e3!=2)� = 0(E = energy, V = 3D volume; see Wesson 1992a). The equation of state of the uid desribed by(2.8) is of ourse the p = �=3 typial of radiation.To go beyond radiation, we use one of the lasses of solutions to (2.1) or (2.2) due to Pone de Leon(1988). With a rede�nition of onstants appropriate to the indued-matter theory, it has e� = l2,e! = t2=�l2=(1��), e� = �2(1� �)�2t2 in (2.4), whih now readsdS2 = l2dt2 � t2=�l2=(1��)(dr2 + r2d
2)� �2(1� �)�2t2dl2 : (2.9)This has a growing �fth dimension, and density and pressure whih depend on the one assignableonstant �. From (2.6) or (2.7) they are8�� = 3�2l2t2 8�p = (2�� 3)�2l2t2 : (2.10)The presene of l here may appear puzzling at �rst, but the oordinates are of ourse arbitraryand the proper time is T � lt. (Alternatively, the presene of x4 = l depends on whether weonsider the pure 4D metri or the 4D part of the 5D metri.) In terms of this, 8�� = 3=�2T 2 and8�p = (2� � 3)=�2T 2. For � = 3=2, 8�� = 4=3T 2 and p = 0. While for � = 2, 8�� = 3=4T 2 and8�p = 1=4T 2. The former is idential to the 4D Einstein-de Sitter model for the late universe withdust. The latter is idential to the 4D standard model for the early universe with radiation or highlyrelativisti partiles. (The oinidene of the properties of matter for this model with � = 2 and theprevious model does not neessarily imply that they are the same, sine similar matter an belong todi�erent solutions even in 4D.) As before, the usual forms of the law of motion and the �rst law ofthermodynamis are reovered, provided we use the e�etive gravitational density of matter de�nedby the ombination �+3p (see Setion 1.3; these laws are reoverable generally for metris with form(2.4) using the proper time T � e�=2t and the proper distane R � e!=2r). The equation of state ofthe uid desribed by (2.9) is p = (2�=3� 1)�, and so generally desribes isothermal matter.Other properties of (2.9) were studied by Wesson (1992a, 1994), inluding the sizes of horizonsand the nature of the extra oordinate l. We defer further disussion of this model, beause here weare mainly dealing with theoretial aspets of indued-matter theory. However, we note two things.First, the solutions (2.8) and (2.9) desribe in general photons with zero rest mass and partiles with�nite rest mass, respetively; and the fat that the former does not depend on l whereas the latterdoes, gives us a �rst inkling that l is related to mass (see later). Seond, the solution (2.9) givesan exellent desription of matter in the late and early universe from the big-bang perspetive ofphysis in 4D; but it has a somewhat amazing property from the perspetive of geometry in 5D.Thus onsider a oordinate transformation from t, r, l to T , R, L spei�ed by34



T = ��2�tl=�ll=(1��)�1 + r2�2�� �2(1� 2�)ht�ll�=(1��)i(1�2�)=�R = rtl=�ll=(1��)L = ��2�tl=�ll=(1��)�1� r2�2�+ �2(1� 2�)ht�ll�=(1��)i(1�2�)=� : (2.11)Then (as may be veri�ed by omputer) the Pone de Leon metri (2.9) in standard form beomesdS2 = dT 2 � (dR2 +R2d
2)� dL2 : (2.12)This means that our universe an either be viewed as a 4D spaetime urved by matter or as a 5Dat spae that is empty.2.4 The soliton aseThere is a lass of exat solutions of (2.1) whih has been redisovered several times during thehistory of Kaluza-Klein theory. The metri is stati, spherially-symmetri in ordinary (3D) spae,and independent of the �fth oordinate. (There are many of these solutions rather than one beauseBirkho�'s theorem does not apply in its onventional form in 5D.) The solutions have been interpretedas desribing magneti monopoles (Sorkin 1983), massive objets of whih some alled solitons haveno gravitational e�et (Gross and Perry 1983), and blak holes (Davidson and Owen 1985). The�rst usage is questionable, beause the 4D Shwarzshild solution is a speial member of the lassand gravitational in nature, and magneti monopoles are in any ase onspiuous by their absenein the real world. The last usage is misleading, beause all but the Shwarzshild-like member of thelass lak event horizons of the onventional sort. The middle usage an be extended, sine in theindued-matter piture we will see that these solutions represent stable, extended objets (Wesson1992b). Thus even though the word is over-worked in physis, we regard these 5D 1-body solutionsas representing objets alled solitons.A partiularly simple member of the soliton lass was redisovered by Chatterjee (1990). Itis instrutive to start with this, beause it has been analyzed in standard or Shwarzshild-likeoordinates (as opposed to the isotropi oordinates used below). Thus the 5D metri has an intervalgiven by dS2 = �1� 2pApr2 + A +pA�dt2 � dr21 + A=r2 � r2d
2��1� 2pApr2 + A +pA��1dl2 : (2.13)Here the onstant A would normally be identi�ed in gravitational appliations via the r !1 limitas pA =M�, the mass of an objet like a star at the entre of ordinary spae. However, as mentionedabove, it annot be assumed that (2.13) is a blak hole. Indeed, the �rst metri oeÆient in (2.13)goes to zero only for r tending to zero. In other words, the event horizon in the oordinates of (2.13)shrinks to a point at the entre of ordinary spae. (This is not altered by a Killing-vetor presriptionfor horizons and di�erent sets of oordinates: see Wesson and Pone de Leon 1984.) To see what(2.13) atually represents, let us use the indued-matter approah. It is helpful to onsider a metriwe will ome bak to later, namely 35



dS2 = e�dt2 � e�dr2 +R2d
2 � e�dl2 : (2.14)This inludes (2.13) if we assume that the metri oeÆients �, �, R, � depend only on the radiusand not on the time or extra oordinate. Then following the same proedure as in the preedingsetion, we obtain the omponents of the indued 4D energy-momentum tensor:8�T 00 = e���12�00 + 14�02 + R0�0R � 14�0�0�8�T 11 = e���R0�0R + 14� 0�0�8�T 22 = e���12�00 + 14�02 + R0�02R + 14� 0�0 � 14�0�0� : (2.15)Here a prime denotes the partial derivative with respet to the radius. Other omponents are zero,and of ourse T 33 = T 22 beause of spherial symmetry. The omponents (2.15) whih de�ne theproperties of matter depend on derivatives of �, that is upon the geometry of the �fth dimension.However, matter and geometry are uni�ed via the �eld equations GAB = 0 of (2.2), and we an usethese to rewrite (2.15) in a more algebraially onvenient form:8�T 00 = 1R2 � e���2R00R + R02R2 � R0�0R �8�T 11 = 1R2 � e���R02R2 + R0� 0R �8�T 22 = �14e���2� 00 + � 02 + 4R00R � 2R0�0R + 2R0� 0R � � 0�0� : (2.16)Substitutinginto these equations for the Chattejee solution (2.13) gives8�T 00 = Ar48�T 11 = � 2pAr2pr2 + A � 2ApAr4pr2 + A � Ar48�T 22 = pAr2pr2 + A + ApAr4pr2 + A : (2.17)These omponents obey the equation of stateT 00 + T 11 + T 22 + T 33 = 0 ; (2.18)whih is radiation-like. The matter desribed by (2.17) has a gravitational mass that an be evaluatedusing the standard 4D expressionMg(r) � Z (T 00 � T 11 � T 22 � T 33 )p�g4dV3 ; (2.19)where g4 is the determinant of the 4-metri and dV3, is a 3D volume element. Using (2.14) and (2.16)this gives 36



Mg(r) = 12 Z �� 00 + 12� 02 + 2R0� 0R � 12� 0�0�e(���)=2R2dr : (2.20)This is most onveniently evaluated in the oordinates of the Chatterjee solution in the form (2.13).Thus putting R! r and integrating givesMg(r) = 12r2e(���)=2� 0 ; (2.21)whih with the oeÆients of (2.13) isMg(r) = pA�pr2 + A�pApr2 + A+pA�1=2 : (2.22)We see that Mg(1) = pA, agreeing with the usual metri-based de�nition of the mass as notedabove. However, we also see that Mg(0) = 0, meaning that the gravitational mass goes to zero atthe entre. In summary, the Chatterjee soliton (2.13) is a ball of radiation-like matter whose densityand pressure fall o� very rapidly away from the entre, and whose integrated mass agrees with theonventionai de�nition only at in�nity.The above onerned a speial ase of a broad lass of 5D solutions whih has been widely studiedin forms due to Gross and Perry (1983) and Davidson and Owen (1985). These authors use di�erentterminologies, partiularly for two dimensionless onstants whih enter the solutions. The former use�, � and the latter use �, " where the two are related by � = �1=�, " = ��=� We adopt the latternotation, as it is more suited to the indued-matter approah. In it, positive e�etive density ofmatter requires � > 0, and positive gravitational mass as measured at spatial in�nity requires "� > 0(see below). Thus, physiality requires that both � and " be positive. In terms of these onstants theChatterjee solution we have looked at already has just � = 1, " = 1. And the Shwanshild solutionwe will look at below has "! 0, �!1, "�! 1. We now proeed to onsider the general lass.This has usually been disussed with the metri in spatially isotropi form, whih we write asdS2 = e�dt2 � e�(dr2 + r2d
2)� e�dl2 : (2.23)Then solutions of the apparently empty 5D �eld equations (2.1) or (2.2) are given bye�=2 = �ar � 1ar + 1�"�e�=2 = (ar � 1)(ar + 1)a2r2 �ar + 1ar � 1�`(��1)e�=2 = �ar + 1ar � 1�" : (2.24)Here a is a dimensional onstant to do with the soure, and the two dimensionless onstants arerelated by a onsisteny relation derived from the �eld equations:"2(�2 � � + 1) = 1 : (2.25)This means that the lass is a 2-parameter one, depending on a and one or the other of ", �. Also,we noted above that physiality requires that both � and " be positive. Now, the surfae area of37



2-shells around the entre of the 3-geometry varies as (ar � 1)1�"(��1), and will shrink to zero atr = 1=a provided 1 � "(� � 1) > 0. This ombined with (2.25) means � > 0. That is, the entreof the 3-geometry is at r = l=a for physial hoies of the parameters (see Billyard, Wesson andKalligas 1995 for a more extensive disussion). Also, e� ! 0 for r ! 1=a for ", � > 0. So as forthe Chatterjee ase above, the event horizon for the general lass shrinks to a point at the entre ofordinary spae.The properties of the indued matter assoiated with (2.24) an be worked out following the sameproedure as before. The omponents of the indued 4D energy-momentum tensor are:8�T 00 = �e���00 + 14�02 + 2�0r �8�T 11 = �e��14�02 + 12� 0�0 + � 0r + �0r �8�T 22 = �e��� 00 + �00 + 12� 02 + � 0r + �0r � : (2.26)Substituting into these equations for the solutions in the form (2.24) and doing some tedious algebragives 8�T 00 = 4"2�a6r4(ar � 1)4(ar + 1)4�ar � 1ar + 1�2"(��1)8�T 11 = 4"a5r3(ar � 1)3(ar + 1)3�ar � 1ar + 1�2"(��1)�4"a6r4(2"+ 2ar � "�)(ar � 1)4(ar + 1)4 �ar � 1ar + 1�2"(��1)8�T 22 = � 2"a5r3(ar � 1)3(ar + 1)3�ar � 1ar + 1�2"(��1)�4"a6r4("�� "+ ar)(ar � 1)4(ar + 1)4 �ar � 1ar + 1�2"(��1) : (2.27)These omponents obey the same equation of state as before, namely (T 00 +T 11 +T 22 +T 33 ) = 0. If weaverage over the 3 spatial diretions, this is equivalent to saying that the equation of state is p = �=3.Also as before, we an alulate the standard 4D gravitational mass of a part of the uid by using(2.19). This with (2.23) givesMg(r) = 4� Z (T 00 � T 11 � T 22 � T 33 )e(�+3�)=2r2dr ; (2.28)whih with (2.26) is Mg(r) = 12 Z �� 00 + 12� 02 + 2� 0r + 12� 0�0�e(�+�)=2r2dr= 12r2e(���)=2� 0 : (2.29)Then with the oeÆients of (2.24) we obtain 38



Mg(r) = 2"�a �ar � 1ar + 1�" : (2.30)This is the gravitational mass of a soliton as a funtion of (isotropi) radius r, and to be positive asmeasured at in�nity requires that "� > 0. Sine positive density requires that � > 0 by (2.27) we seethat we need both � > 0 and " > 0, as we stated above. Then (2.30) shows that Mg(r = 1=a) = 0,meaning again that the gravitational mass goes to zero at the entre. However, the mass as measuredat spatial in�nity is now 2"�=a and not just 2=a =M� as it was for the Chatterjee ase.This is interesting, and should be ompared to what we obtain if we substitute parameters or-responding to the Shwarzshild ase, namely " ! 0, � ! 1, "� ! 1. Then (2.30) gives Mg(r) =onstant = 2=a = M�. And the metri (2.23), (2.24) beomesdS2 = �1�M�=2r1 +M�=2r�2dt2 � �1 + M�2r �4(dr2 + r2d
2)� dl2 : (2.31)This is just the Shwarzshild solution (in isotropi oordinates) plus a at and therefore physiallyinnouous extra dimension. In other words, if we use the onventionally de�ned 4D gravitationalmass as a diagnosti for 5D solitons, we reover the usual 4D Shwarzshild mass exatly.We have arried out a numerial investigation of preeding relations to larify the status of theShwarzshild solution (Wesson and Pone de Leon 1994). The problem is that if we set " = 0 and"� = 1 then (2.30) gives Mg(r) = 2=a for all r; but if we keep " small and let r ! 1=a, then (2.30)gives Mg(r = 1=a) = 0 irrespetive of ". Clearly the limit by whih one is supposed to reover theShwanshild solution from the soliton solutions is ambiguous. However, our numerial results showthat, from the viewpoint of perturbation analysis at least, the Shwarzshild ase is just a highlyompressed soliton. We have also looked at other de�nitions for the mass of a soliton, inludingthe so-alled proper mass (whih depends on an integral involving only and is badly de�ned at theentre) and the ADM mass (whih depends on a produt of �eld strength and area and is wellde�ned at the entre). To larify what happens near the entre of a soliton, we have also alulatedthe geometri salars for metri (2.23), (2.24). The relevant 5D invariant is the Kretshmann salarK � RABCDRABCD, whih we have evaluated algebraially and heked by omputer. It isK = 192a10r6(a2r2 � 1)8�ar � 1ar + 1�4"(��1)f1� 2"(�� 1)(2 + "2�)ar+2(3� "4�2)a2r2 � 2"(�� 1)(2 + "2�)a3r3 + a4r4g : (2.32)Taking into aount the onstraint (2.25), this may be found to diverge for � > 0 at r = 1=a, showingthat there is a geometri singularity at the entre as we have de�ned the latter. [Note that if welet " ! 0, � ! 1, "� ! 1 then (2.32) gives K = 192a10r6=(ar + 1)12 in isotropi oordinates, orK = 48M2� =(r0)6 in urvature oordinates where r0 = r(1 + 1=ar)2 and a = 2=M�. This result agreesformally with the one from Einstein theory, but from our viewpoint no longer has muh signi�anesine the point r0 = 0 or r = �1=a is not part of the manifold, whih ends at r = 1=a or r0 = 2M�.℄The relevant 4D invariant is C � R��R��, whih is most easily evaluated algebraially using the �eldequations. The latter are (2.1) or RAB = 0, but if there is no dependeny on the extra oordinateread just R�� = 8�T�� beause the 4D Rii salar R is zero. Then C = 64�2[(T 00 )2+(T 11 )2+2(T 22 )2℄,and an be evaluated using the omponents of the energy-momentum tensor (2.27). It isC = 8"2a10r6(a2r2 � 1)8�ar � 1ar + 1�2"(��1)f3 + 4"(3� 2�)ar39



+2(3 + 6"2 + 4"2�2 � 8"2�)a2r2 + 12"a3r3 + 3a4r4g : (2.33)This also diverges at r = 1=a, on�rming that there is a singularity in the geometry at the entre.In onjuntion with the fat that most of them do not have event horizons of the standard sort, thismeans that tehnially solitons should be lassi�ed as naked singularities.Whether or not we an see to the entre of a soliton, pratially, is a di�erent question. Whatwas a point mass in 4D general relativity has beome a �nite objet in 5D indued-matter theory.The uid is `hot', with anisotropi pressure and density that falls o� rapidly away from the entre(for large distanes it goes as M2� =r4 where M� is the mass as measured at spatial in�nity). TheShwarzshild solution is somewhat anomalous, but an be regarded as a soliton where matter is soonentrated towards the entre as to leave most of spae empty. In short, solitons are `holes' in thegeometry surrounded by indued matter.2.5 The ase of neutral matterKaluza-Klein theory in 5D has traditionally identi�ed the g4� omponents of the metri tensor withthe potentials A� of lassial eletromagnetism (see Setion 1.5). These set to zero therefore give insome sense a desription of neutral matter. However, any fully ovariant 5D theory, suh as indued-matter theory, has 5 oordinate degrees of freedom, whih used judiiously an lead to onsiderablealgebrai simpli�ation without loss of generality. Therefore, a natural ase to study is spei�ed byg4� = 0, g44 6= 0. This removes the expliit eletromagneti potentials and leaves one oordinatedegree of freedom over to be used appropriately (e.g., to simplify the equation of motion of a partile).This hoie of oordinates or hoie of gauge involves g�� = g��(xA), g44 = g44(xA) and so is notrestrited by the ylinder ondition of old Kaluza-Klein theory. It admits uids onsisting of partileswith �nite or zero rest mass, and thus inludes the ases we have studied in Setions 2.3 and 2.4. Inthe present setion, we follow Wesson and Pone de Leon (1992). Our aims are to give a reasonablyself-ontained aount of the matter gauge and to lay the foundation for later appliations.We have a 5D interval dS2 = gABdxAdxB whereg�� = g��(xA) g4� = 0g44 � "�2(xA) g44 = 1g44 = "�2 : (2.34)Here "2 = 1 and the signature of the salar part of the metri is left general. (We will see laterthat there are well-behaved lassial solutions of the �eld equations with " = +1 as well as theoften-assumed " = �1, and the freedom to hoose this may also help with the Eulidean approahto quantum gravity.) The 5D Rii tensor in terms of the 5D Christo�el symbols is given byRAB = (�CAB);C � (�CAC);B + �CAB�DCD � �CAD�DBC : (2.35)Here a omma denotes the partial derivative, and below we will use a semiolon to denote the ordinary(4D) ovariant derivative. Putting A! �, B ! � in (2.35) gives us the 4D part of the 5D quantity.Expanding some summed terms on the r.h.s. by letting C ! �; 4 et. and rearranging givesR̂�� = (����);� + (�4��);4 � (����);� � (�4�4);� + ��������+ �����4�4 + �4���D4D � �������� � �4�����4 � �D�4�4�D : (2.36)40



Part of this is the onventional Rii tensor that only depends on indies 0123, soR̂�� = R�� + (�4��);4 � (�4�4);� + �����4�4+ �4���D4D � �4�����4 � �D�4�4�D : (2.37)To evaluate this we need the Christo�el symbols.These an be tabulated here in appropriate groups:�4�� = �g44g���2 �4�4 = g44g44;�2�D4D = gDCg�DC2 ���4 = g�Cg��C2�D�4 = gD4g44;�2 + gDg��2 �4�D = g44gD4;�2 � g44g�D;42 : (2.38)
��44 = �g��g44;�2 ��4� = g��g���2���� = g��g��;�2 �444 = g44g�442��4� = g��g���2 �44� = g44g44;�2 : (2.39)

��4� = g��g���2 �44� = g44g44;�2��4� = g��g���2 �444 = g44g44;42���� = g��g��;�2 ���� = g��2 (g��;� + g��;� � g��;�)��44 = �g��g44;�2 �4�� = �g44g���2 : (2.40)We will use these respetively to evaluate (2.37) above and (2.44), (2.54) below.Thus substituting into and expanding some terms in (2.37) givesR̂�� = R�� � g�44g���2 � g44g����2 � g44;� g44;�2 � g44g44;��2+g44g44;�����2 � g��g���g44g���4 � (g44)2g���g�444+g��g44g���g���2 � (g44)2g44;�g44;�4 : (2.41)Some of the terms here may be rewritten using 41



�g44;� g44;�2 � g44g44;��2 + g44g44;�����2 � (g44)2g44;�g44;�4= � 1�(��;� � ������) � ���;�� ; (2.42)Where �� � �;�. Then (2.41) givesR̂�� = R�� � ��;�� + "2�2���g���� � g���� + g��g���g��� � g��g���g���2 � : (2.43)We will use this below when we onsider the �eld equations.Returning to (2.35), we put A = 4, B = 4 and expand with C ! �, 4 et. to obtainR44 = (��44);� � (��4�);4 + ��44���� + �444��4� � ��4���4� � �44���44 : (2.44)The Christo�el symbols here are tabulated in (2.39), and ause (2.44) to beomeR44 = � g��;� g44;�2 � g��g44;��2 � g���g���2 � g��g����2� g��g44;�g��g��;�4 + g44g�44g��g���4� g��g���g��g���4 + g44g44;�g��g44;�4 : (2.45)Some of the terms here may be rewritten using�g��g44;�2 � g��g44;��2 � g��g44;�g��g��;�4 + g44g44;�g��g44;�4= �"��g��;� �� + g����;� + g��g��g��;���2 �= �"�g����;� : (2.46)Here we have obtained the last line by noting that ��;� = ��;� � ������ impliesg����;� + g��g��g��;���2 = g����;� + g��g��g��;���2 + g��g��g��;���2 ; (2.47)and that (��� );� = 0 implies (g��;� + g��g��g��;�)�� = 0. Putting (2.46) in (2.45) gives lastlyR44 = �"��� � g���g���2 � g��g����2 + ��g��g���2� � g��g��g���g���4 ; (2.48)where �� � g����;� de�nes the 4D urved-spae box operator. Equations (2.43) and (2.48) an beused with the 5D �eld equations (2.1) whih we repeat here:RAB = 0 : (2.49)42



Then R̂�� = 0 in (2.43) givesR�� = ��;�� � "2�2���g���� � g���� + g��g���g��� � g��g���g���2 � : (2.50)And R44 = 0 in (2.48) gives"��� = �g���g���4 � g��g����2 + ��g��g���2� ; (2.51)where we have noted that (Æ�� );4 = 0 implies g��g��g���g��� + g���g��� = 0. From (2.50) we an formthe 4D Rii urvature salar R = g��R��. Eliminating the ovariant derivative using (2.51), andagain using (Æ�� );4 = 0 to eliminate some terms, givesR = "4�2�g���g��� + �g��g����2� : (2.52)With (2.50) and (2.52), we are now in a position to de�ne if we wish an energy-momentum tensor in4D via 8�T�� � R�� �Rg��=2. It is8�T�� = ��;�� � "2�2���g���� � g���� + g��g���g��� � g��g���g���2+g��4 �g���g��� + (g��g���)2�� : (2.53)Provided we use this energy-momentum tensor, Einstein's 4D �eld equations (2.3) or G�� = 8�T��will of ourse be satis�ed.The mathematial expression (2.53) has good properties. It is a symmetri tensor that has apart whih depends on derivatives of � with respet to the usual oordinates x0123, and a partwhih depends on derivatives of other metri oeÆients with respet to the extra oordinate x4.[The �rst term in (2.53) is impliitly symmetri beause it depends on the seond partial derivative,while the other terms are expliitly symmetri.℄ It is also ompatible with what is known aboutthe reovery of 4D properties of matter from apparently empty 5D solutions of Kaluza-Klein theory.Thus the osmologial ase studied in Setion 2.3 agrees with (2.53) and has matter whih owes itsharateristis largely to the x4-dependeny of g�� in that relation. While the soliton ase studiedin Setion 2.4 agrees with (2.53) and has matter whih depends on the �rst or salar term in thatrelation. With (2.53) and preeding relations, the ase where there is no dependeny on x4 beomestransparent. Then (2.51) beomes the salar wave equation for the extra part of the metri (g����;� =0 with g44 = "�2). And (2.53) gives T = T��g�� = 0, whih implies a radiation-like equation ofstate. However, in general there must be x4-dependene if we are to reover more omplex equationsof state from solutions of RAB = 0.These �eld equations have 4 other omponents we have not so far onsidered, namely R4� = 0.This relation by (2.35) expanded isR4� = (��4�);� + (�44�);4 � (��4�);� � (�444);�+ ��4��A�A + �44��A4A � �A4����A � �D44�4�D : (2.54)The Christo�el symbols here are tabulated in (2.40) and ause (2.54) to beome43



R4� = g44g��4 �g���g44;� � g44;�g����+ g��;� g���2+ g��g���;�2 � g��;� g���2 � g��g���;�2+ g��g��g���g��;�4 + g���g��;�4 : (2.55)Here we have done some algebra using (g44g44);� and 4 = 0 or g�44g44;� � g44;�g�44 = 0, and (Æ��);4 = 0or g��g��g�� + g��� = 0. [We also note in passing that one an use (�44�);4 = (�444);� in (2.54) andobtain an alternative form of (2.55) with the last term replaed by g��;� g���=4.℄ While (2.55) may beuseful in other omputations, it is helpful for our purpose here to rewrite it asR4� = ��x��g��g���2 �� ��x��g��g���2 �+ �g��g��;�2 ��g��g���2 �� �g��g��;�2 ��g��g���2 �� g44g44;�2 �g��g���2 � Æ��g��g���2 � : (2.56)Noting that �=�xa = Æ��(�=�x�) and that �g44g44;�=2 = pg44(�=�x�)(1=pg44) allows us to obtain�nally R4�pg44 = ��x� � 12pg44�g��g��� � Æ��g��g�����+ �g��g��;�2 ��g��g���2pg44 �� �g��g��;�2 ��g��g���2pg44 � : (2.57)This form suggests we should introdue the 4-tensorP �� � 12pg44�g��g��� � Æ��g��g���� : (2.58)The divergene of this is P ��;� = (P �� );� + ����P �� � ����P �� ;whih when written out in full may be shown to be the same as the r.h.s. of (2.57). The lattertherefore reads R4�pg44 = P ��;� : (2.59)The �eld equations (2.49) as R4� = 0 an then be summed up by the relationsP ��;� = 0 ;P �� � 12pg44�g��g��� � Æ��g��g���� : (2.60)44



These have the appearane of onservation laws for P �� . The fully ovariant form and assoiatedsalar for the latter are: P�� = 12pg44�g��� � g��g��g����P = �3g��g���2pg44 : (2.61)We will examine these quantities elsewhere, but here we omment that while our starting gauge(2.34) removed the expliit eletromagneti potentials, the �eld equations R4� = 0 or (2.60) are ofeletromagneti type.It is apparent from the working in this setion that the starting onditions (2.34) provide aonvenient way to split the 5D �eld equations RAB = 0 into 3 sets: The 5D equations R̂�� = 0give a set of equations in the 4D Rii tensor R�� (2.50); the 5D equation R44 = 0 gives a wave-likeequation in the salar potential (2.51); and the 5D equations R4� = 0 an be expressed as a setof 4D onservation laws (2.60). Along the way we also obtain some other useful relations, notablyan expression for the 4D Rii salar in terms of the dependeny of the 4D metri on the extraoordinate (2.52). However, the physially most relevant expression is an e�etive or indued 4Denergy-momentum tensor (2.53). Another way to express these results is to say that the 15 �eldequations RAB = 0 of (2.1) or GAB = 0 of (2.2) an always be split into 3 sets whih make physialsense provided the metri is allowed to depend on the extra oordinate x4. These sets onsist of 4onservation equations of eletromagneti type, 1 equation for the salar �eld of wave type, and 10equations for �elds and matter of gravitational type. In fat, the last are Einstein's equations (2.3)of general relativity, with matter indued from the extra dimension.2.6 ConlusionThe idea of embedding G�� = 8�T�� (4D) in RAB = 0 (5D) is motivated by the wish to explainlassial properties of matter rather than merely aepting them as given. In appliation to the os-mologial ase it works straightforwardly, and gives bak 5D geometri quantities whih are identialto the 4D density and pressure (Setion 2.3). This is important: what we derive from the 5D equa-tions is not something esoteri but ordinary matter. In appliation to the soliton or 1-body ase, theidea leads to a lass of radiation-like solutions whih ontains as a very speial ase the Shwarzshildsolution (Setion 2.4). In general appliation to neutral matter, the properties of the latter turn outto be intimately onneted to x4-dependeny of the metri (Setion 2.5). Indued-matter theoryatually admits a wide variety of equations of state (Pone de Leon and Wesson 1993). But in thematter gauge at least, independene from x4 implies radiation-like matter, while dependene on x4implies other kinds of matter.The theoretial basis we have demonstrated in this hapter leads naturally to the question ofobservations, partiularly with regard to the solitons. As mentioned above, there is a lass of thesein 5D rather than the unique Shwarzshild solution of 4D, beause Birkho�'s theorem in its onven-tional form does not apply. Indeed, there are known exat solutions whih represent time-dependentsolitons (Liu, Wesson and Pone de Leon 1993; Wesson, Liu and Lim 1993). And there is known anexat solution whih is x4-dependentand Shwarzshild-like (Mashhoon, Liu and Wesson, 1994). Wewill return to the latter, where we will �nd that it implies the same dynamis as in general relativityand so poses no problem. However, there remains the question of the observational status of thestandard solitons. This has been investigated by a number of people, most of whom were not workingin the indued-matter piture (see Overduin and Wesson 1997). Here, we an regard the soliton as a45



onentration of matter at the entre of ordinary spae, and ask about the motions of test partilesat large distanes. Spei�ally, we ask what onstraints we an put on the soliton 1-body metrifrom the lassial tests of relativity.
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