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0.2 Prefa
eEinstein endorsed the view of Kaluza, that gravity 
ould be 
ombined with ele
tromagnetism if thedimensionality of the world is extended from 4 to 5. Klein applied this idea to quantum theory, layinga basis for the various modern versions of string theory. Re
ently, work by a group of resear
hers hasresulted in a 
oherent formulation of 5D relativity, in whi
h matter in 4D is indu
ed by geometryin 5D. This theory is based on an unrestri
ted group of 5D 
oordinate transformations that leads tonew solutions and agreement with the 
lassi
al tests of relativity. This book 
olle
ts together themain te
hni
al results on 5D relativity, and shows how far we 
an realize Einstein's vision of physi
sas geometry.Spa
e, time and matter are physi
al 
on
epts, with a long but somewhat subje
tive history. Tensor
al
ulus and di�erential geometry are highly developed mathemati
al formalisms. Any theory whi
hjoins physi
s and algebra is perfor
e open to dis
ussions about interpretation, and the one presented inthis book leads to new issues 
on
erning the nature of matter. The present theory should not stri
tlyspeaking be 
alled Kaluza-Klein: KK theory relies on 
onditions of 
ylindri
ity and 
ompa
ti�
ationwhi
h are now removed. The theory should also, while 
lose to it in some ways, not be 
onfusedwith general relativity: GR theory has an expli
it energy-momentum tensor for matter while nowthere is none. What we 
all matter in 4D spa
etime is the manifestation of the �fth dimension,hen
e the phrase indu
ed-matter theory sometimes used in the literature. However, there is nothingsa
rosan
t about 5D. The �eld equations take the same form in ND, and N is to be 
hosen with aview to physi
s. Thus, superstrings (10D) and supergravity (11D) are valid 
onstru
ts. However,pra
ti
al physi
al appli
ations are expe
ted to be forth
oming only if there is physi
al understandingof the nature of the extra dimensions and the extra 
oordinates. In this regard, spa
e-time-mattertheory is uniquely fortunate. This be
ause (unrestri
ted) 5D Riemannian geometry turns out to bejust algebrai
ally ri
h enough to unify gravity and ele
tromagnetism with their sour
es of mass and
harge. In other words, it is a Ma
hian theory of me
hani
s.There is now a large and rapidly growing literature on this theory, and the author is aware thatwhat follows is more like a textbook on basi
s than a review of re
ent dis
overies. It should also bestated that mu
h of what follows is the result of a group e�ort over time. Thus 
redit is due espe
iallyto H. Liu, B. Mashhoon and J. Pon
e de Leon for their solid theoreti
al work; to C.W.F. Everittwho sagely kept us in 
onta
t with experiment; and to A. Billyard, D. Kalligas, J.M. Overduin andW. Sajko, who as graduate students 
heerfully ta
kled problems that would have made their older
olleagues blink. Thanks also go to S. Chatterjee, A. Coley, T. Fukui and R. Tavakol for valuable
ontributions. However, the responsibility for any errors or omissions rests with the author.The material in this book is diverse. It is largely 
on
erned with higher-dimensional gravity,tou
hes parti
le physi
s, and looks for appli
ation to astrophysi
s and 
osmology. Depending ontheir spe
iality, some workers may not wish to read this book from 
over to 
over. Therefore thematerial has been arranged in approximately self-
ontained 
hapters, with a bibliography at the endof ea
h. The material does, of 
ourse, owe its foundation to Einstein. However, it will be apparentto many readers that it also owes mu
h to the ideas of his 
ontemporary, Eddington.Paul S. Wesson0.3 ContentsPrefa
e V1. Con
epts and Theories of Physi
s 11.1 Introdu
tion 13
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Chapter 1Con
epts and Theories of Physi
s\Physi
s should be beautiful"(Sir Fred Hoyle, Veni
e, 1974)1.1 Introdu
tionPhysi
s is a logi
al a
tivity, whi
h unlike some other intelle
tual pursuits frowns on radi
al departures,progressing by the introdu
tion of elegant ideas whi
h give a better basis for what we already knowwhile leading to new results. However, this inevitably means that the subje
t at a fundamental levelis in a 
onstant state of reinterpretation. Also, it is often not easy to see how old 
on
epts �t into anew framework. A prime example is the 
on
ept of mass, whi
h has traditionally been regarded asthe sour
e of the gravitational �eld. Histori
ally, a sour
e and its �eld have been viewed as separatethings. But as re
ognized by a number of workers through time, this distin
tion is arti�
ial andleads to signi�
ant te
hni
al problems. Our most su

essful theory of gravity is general relativity,whi
h traditionally has been formulated in terms of a set of �eld equations whose left-hand sideis geometri
al (the Einstein tensor) and whose right-hand side is material (the energy-momentumtensor). However, Einstein himself realized soon after the formulation of general relativity that thissplit has drawba
ks, and for many years looked for a way to transpose the \base-wood" of the right-hand side of his equations into the \marble" of the left-hand side. Building on ideas of Kaluza andKlein, it has re
ently be
ome feasible to realize Einstein's dream, and the present volume is mainlya 
olle
tion of te
hni
al results, whi
h shows how this 
an be done. The basi
 idea is to unify thesour
e and its �eld using the ri
h algebra of higher-dimensional Riemannian geometry. In otherwords: spa
e, time and matter be
ome parts of geometry.This is an idea many workers would espouse, but to be something more than an a
ademi
 jauntwe have to re
all the two 
onditions noted above. Namely, we have to re
over what we alreadyknow (with an unavoidable need for reinterpretation); and we have to derive something new withat least a prospe
t of testability. The present 
hapter is 
on
erned with the �rst of these, andthe su

eeding 
hapters mainly with the se
ond. Thus the present 
hapter is primarily a reviewof gravitation and parti
le physi
s as we presently understand these subje
ts. Sin
e this is mainlyknown material, these a

ounts will be kept brief, and indeed those readers who are familiar with thesesubje
ts may wish to boost through them. However, there is a theme in the present 
hapter, whi
htrans
ends the division of physi
s into theories of ma
ros
opi
 and mi
ros
opi
 s
ope. This is thenature and origin of the so-
alled fundamental 
onstants. These are 
ommonly taken as indi
atorsof what kind of theory is under 
onsideration (e.g., Newton's 
onstant is 
ommonly regarded astypi
al of 
lassi
al theory and Plan
k's 
onstant as typi
al of quantum theory). But at least onefundamental 
onstant, the speed of light, runs through all modern physi
al theories; and we 
annot7



expe
t to rea
h a meaningful uni�
ation of the latter without a proper understanding of where thefundamental 
onstants originate. In fa
t, the 
hapters after this one make use of a view that itis ne
essary to establish and may be unfamiliar to some workers: the fundamental 
onstants arenot really fundamental, their main purpose being to enable us to dimensionally transpose 
ertainmaterial quantities so that we 
an write down 
onsistent laws of physi
s.1.2 Fundamental 
onstantsA lot has been written on these, and there is a large literature on unsu

essful sear
hes for theirpossible variations in time and spa
e. We will be mainly 
on
erned with their origin and status, onwhi
h several reviews are available. Notably there are the books by Wesson (1978), Petley (1985)and Barrow and Tipler (1986); the 
onferen
e pro
eedings edited by M
Crea and Rees (1983); andthe arti
les by Barrow (1981) and Wesson (1992). We will presume a working physi
ist's knowledgeof the 
onstants 
on
erned, and the present se
tion is to provide a basis for the dis
ussions of physi
altheory whi
h follow.The so-
alled fundamental 
onstants are widely regarded as a kind of distillation of physi
s. Theirdimensions are related to the forms of physi
al laws, whose stru
ture 
an in many 
ases be re
overedfrom the 
onstants by dimensional analysis. Their sizes for some 
hoi
e of units allow the physi
allaws to be evaluated and 
ompared to observation. Despite their per
eived fundamental nature,however, there is no theory of the 
onstants as su
h. For example, there is no generally a

eptedformalism that tells us how the 
onstants originate, how they relate to one another, or how many ofthem are ne
essary to des
ribe physi
s. This la
k of ba
kground seems odd for parameters that arewidely regarded as basi
.The 
onstants we will be primarily 
on
erned with are those that �gure in gravity and parti
lephysi
s. It is 
onvenient to 
olle
t the main ones here, along with their dimensions and approximatesizes in 
.g.s. units:Speed of light 
 L T�1 3:0�1010Gravitational 
onstant G M�1 L3 T�2 6:7�10�8Plan
k's 
onstant h M L2 T�1 6:6�10�27Ele
tron 
harge (modulus) e M1=2 L3=2 T�1 4:8�10�10Here e is measured in ele
trostati
 or Gaussian units. We will use e.s.u. in the bulk of whatfollows, though S.I. will be found useful in pla
es. The two systems of units are of 
ourse related by4�"0, where the permittivity of free spa
e is "0 = 8:9� 10�12C2m�3s2Kg�1. In S.I. e = 1:6� 10�19C(Coulombs: see Ja
kson 1975, pp. 29, 817; and GriÆths 1987, p. 9). The permeability of free spa
e�0, is not an independent 
onstant be
ause 
2 � 1="0�0. The above table suggests that we need tounderstand 3 overlapping things: 
onstants, dimensions and units.One 
ommon view of the 
onstants is that they de�ne asymptoti
 states. Thus 
 is the maximumvelo
ity of a massive parti
le moving in 
at spa
etime; G de�nes the limiting potential for a massthat does not form a bla
k hole in 
urved spa
etime; "0 is the empty-spa
e or va
uum limit of thediele
tri
 
onstant; and h de�nes a minimum amount of energy (alternatively ~ � h=2� e de�nes aminimum amount of angular momentum). This view is a

eptable, but somewhat begs the questionof the 
onstants' origin.Another view is that the 
onstants are ne
essary inventions. Thus if a photon moves away froman origin and attains distan
e r in time t, it is ne
essary to write r = 
t as a way of re
on
iling thedi�erent natures of spa
e and time. Or, if a test parti
le of mass m1 moves under the gravitationalattra
tion of another mass m2 and its a

eleration is d2r=dt2 at separation r, it is observed that8



m1d2r=dt2 is proportional to m1m2=r2, and to get an equation out of this it is ne
essary to writed2r=dt2 = Gm2=r2 as a way of re
on
iling the di�erent natures of mass, spa
e and time. A similarargument applies to the motion of 
harged bodies and "0. In quantum theory, the energy E of aphoton is dire
tly related to its frequen
y �, so we ne
essarily have to write E = h�. The point is,that given a law of physi
s whi
h relates quantities of di�erent dimensional types, 
onstants with thedimensions 
 = LT�1; G =M�1L3T�2; "0 = Q2M�1L�3T 2 and h =ML2T�1 are obligatory.This view of the 
onstants is logi
al, but disturbing to many be
ause it means they are not reallyfundamental and in fa
t largely subje
tive in origin. However, it automati
ally answers the questionraised in the early days of dimensional analysis as to why the equations of physi
s are dimensionallyhomogeneous (e.g. Bridgman 1922). It also explains why subsequent attempts to formalize the
onstants using approa
hes su
h as group theory have led to nothing new physi
ally (e.g. Bunge1971). There have also been notable adherents of the view that the fundamental 
onstants are notwhat they appear to be. Eddington (1929, 1935, 1939) put forward the opinion that while an externalworld exists, our laws are subje
tive in the sense that they an 
onstru
ted to mat
h our own physi
aland mental modes of per
eption. Though he was severely 
riti
ized for this opinion by physi
istsand philosophers alike, re
ent advan
es in parti
le physi
s and relativity make it more palatable nowthan before. Je�reys (1973, pp. 87-94, 97) did not see eye to eye with Eddington about the sizesof the fundamental 
onstants, but did regard some of them as disposable. In parti
ular, he pointedout that in ele
trodynami
s 
 merely measures the ratio of ele
trostati
 and ele
tromagneti
 unitsfor 
harge. Hoyle and Narlikar (1974, pp. 97, 98) argued that the 
2 in the 
ommon relativisti
expression (
2t2 � x2 � y2 � z2) should not be there, be
ause \there is no more logi
al reason forusing a di�erent time unit than there would be for measuring x, y, z in di�erent units". Theystated that the velo
ity of light is unity, and its size in other units is equivalent to the de�nition1 s = 299 792 500 m, where the latter number is manmade. M
Crea (1986, p. 150) promulgatedan opinion that is exa
tly in line with what was dis
ussed above, notably in regard to 
, h and G,whi
h he regarded as \
onversion 
onstants and nothing more". These 
omments show that there isa 
ase that 
an be made for removing the fundamental 
onstants from physi
s.Absorbing 
onstants in the equations of physi
s has be
ome 
ommonpla
e in re
ent years, parti
-ularly in relativity where the algebra is usually so heavy that it is undesirable to en
umber it withunne
essary symbols. Formally, the rules for 
arrying this out in a 
onsistent fashion are well known(see e.g. Desloge 1984). Notably, if there are N 
onstants with N bases, and the determinant of theexponents of the 
onstants' dimensions is nonzero so they are independent, then their magnitudes
an be set to unity. For the 
onstants 
; G; "0; h with bases M; L; T; Q it is obvious that "0 andQ 
an be removed this way. (Setting "0 = 1 gives Heaviside-Lorentz units, whi
h are not the sameas setting 4�"0 = 1 for Gaussian units, but the prin
iple is 
learly the same: see GriÆths, 1987, p.9.) The determinant of the remaining dimensional 
ombinations M0L1T�1; M�1L3T�2; M1L2T�1is �nite, so the other 
onstants 
; G; h 
an be set to unity. Con
eptually, the absorbing of 
onstantsin this way prompts 3 
omments. (a) There is an overlap and ambiguity between the idea of abase dimension and the idea of a unit. All of me
hani
s 
an be expressed with dimensional basesM; L; T ; and we have argued above that these originate be
ause of our per
eptions of mass, lengthand time as being di�erent things. We 
ould repla
e one or more of these by another base (e.g. inengineering for
e is sometimes used as a base), but there will still be 3. If we extend me
hani
sto in
lude ele
trodynami
s, we need to add a new base Q. But the prin
iple is 
lear, namely thatthe base dimensions re
e
t the nature and extent of physi
al theory. In 
ontrast, the idea of a unitis less 
on
eptual but more pra
ti
al. We will dis
uss units in more detail below, but for now wepoint up the distin
tion by noting that a 
onstant 
an have di�erent sizes depending on the 
hoi
eof units while retaining the same dimensions. (b) The pro
ess of absorbing 
onstants 
annot be
arried arbitrarily far. For example, we 
annot set e = 1, ~ = 1 and 
 = 1 be
ause it makes theele
trodynami
 �ne-stru
ture 
onstant � � e2=~
 equal to 1, whereas in the real world it is observedto be approximately 1=137. This value a
tually has to do with the pe
uliar status of e 
ompared to9



the other 
onstants (see below), but the 
aution is well taken. (
) Constants mutate with time. Forexample, the lo
al a

eleration of gravity g was apparently at one time viewed as a `fundamental'
onstant, be
ause it is very nearly the same at all pla
es on the Earth's surfa
e. But today weknow that g = GME=r2E in terms of the mass and radius of the Earth, thus rede�ning g in morebasi
 terms. Another example is that the gravitational 
oupling 
onstant in general relativity is notreally G but the 
ombination 8�G=
4 (Se
tion 1.3), and more examples are forth
oming from parti
lephysi
s (Se
tion 1.4). The point of this and the pre
eding 
omments is that where the fundamental
onstants are 
on
erned, formalism is inferior to understanding.To gain more insight, let us dis
uss in greater detail the relation between base dimensions andunits, 
on
entrating on the latter. There are 7 base dimensions in widespread use (Petley 1985, pp.26-29). Of these 3 are the familiar M; L; T of me
hani
s. Then ele
tri
 
urrent is used in pla
eof Q. And the other 3 are temperature, luminous intensity and amount of substan
e (mole). Asnoted above, we 
an swap dimensional bases if we wish as a matter of 
onvenien
e, but the status ofphysi
s �xes their number. By 
ontrast, 
hoi
es of units are in�nite in number. At present there isa propensity to use the S.I. system (Smith 1983). While not enamoured by workers in astrophysi
sand 
ertain other dis
iplines be
ause of the awkwardness of the ensuing numbers, it is in widespreaduse for laboratory-based physi
s. The latter requires well-de�ned and reprodu
ible standards, and itis relevant to review here the status of our basi
 units of time, length and mass.The se
ond in S.I. units is de�ned as 9 192 631 770 periods of a mi
rowave os
illator running underwell-de�ned 
onditions and tuned to maximize the transition rate between two hyper�ne levels inthe ground state of atoms of 133Cs moving without 
ollisions in a near va
uum. This is a fairlysophisti
ated de�nition, whi
h is used be
ause the 
aesium 
lo
k has a long-term stability of 1 partin 1014 and an a

ura
y of reprodu
ibility of 1 part in 1013. These spe
i�
ations are better thanthose of any other apparatus, though in prin
iple a water 
lo
k would serve the same purpose. Somu
h for a unit of time. The metre was originally de�ned as the distan
e between two s
rat
h markson a bar of metal kept in Paris. But it was rede�ned in 1960 to be 1 650 763.73 wavelengths of one ofthe orange-red lines in the spe
trum of a 83Kr lamp running under 
ertain well-de�ned 
onditions.This standard, though, was de�ned before the invention of the laser with its high degree of stability,and is not so good. A better de�nition of the metre 
an be made as the distan
e traveled by lightin va
uum in a time of 1/2 997 924.58 (
aesium 
lo
k) se
onds. Thus we see that a unit of length
an be de�ned either autonomously or in 
onjun
tion with the speed of light. The kilogram startedas a lump of metal in Paris, but unlike its 
ompatriot the metre 
ontinued in use in the form of
arefully weighed 
opies. This was be
ause Avogadro's number, whi
h gives the number of atomsin a mass of material equal to the atomi
 number in grams, was not known by traditional means tovery high pre
ision. However, it is possible to obtain a better de�nition of the kilogram in terms ofAvogadro's number derived from the latti
e spa
ing of a pure 
rystal of a material like 26Si, wherethe spa
ing 
an be determined by X-ray di�ra
tion and opti
al interferen
e. Thus, a unit of mass
an be de�ned either primitively or in terms of the mass of a 
rystal of known size. We 
on
lude thatmost a

ura
y 
an be a
hieved by de�ning a unit of time, and using this to de�ne a unit of length,and then employing this to obtain a unit of mass. However, more dire
t de�nitions 
an be made forall of these quantities, and there is no reason as far as units are 
on
erned why we should not absorb
, G and h.This was a
tually realized by Plan
k, who noted that their base dimensions are su
h as to allowus to de�ne `natural' units of mass, length and time. (See Barrow 1983: similar units were a
tuallysuggested by Stoney somewhat earlier; and some workers have preferred to absorb ~ rather thanh.) The 
orresponden
e between natural or Plan
k units and the 
onventional gram, 
entimetre andse
ond 
an be summarized as follows:1mp � �~
G�1=2 = 2:2� 10�5g 1g = 4:6� 104mp10



1lp � �G~
3 �1=2 = 1:6� 10�33
m 1
m = 6:3� 1032lp
1tp � �G~
5 �1=2 = 5:4� 10�44s 1s = 1:9� 1043tpIn Plan
k units, all of the 
onstants 
, G and ~ be
ome unity and they 
onsequently disappear fromthe equations of physi
s.This is 
onvenient but it involves a 
hoi
e of units only and does not ne
essarily imply anythingmore. It has often been stated that a 
onsistent theory of quantum gravity that involves 
, G and~ would naturally produ
e parti
les of the Plan
k mass noted above. However, this is theoreti
allyunjusti�ed based on what we have dis
ussed; and seems to be pra
ti
ally supported by the observationthat the universe is not dominated by 10�5 g bla
k holes. A more signi�
ant view is that allmeasurements and observations involve 
omparing one thing with another thing of similar type toprodu
e what is ultimately a dimensionless number (see Di
ke 1962; Bekenetein 1979; Barrow 1981;Smith 1983; Wesson 1992). The latter 
an have any value, and are the things that physi
s needsto explain. For example, the ele
tromagneti
 �ne-stru
ture 
onstant � � e2=~
 �= 1=137 needs tobe explained, whi
h is equivalent to saying that the ele
tron 
harge needs to be explained (GriÆths1987). The `gravitational �ne-stru
ture 
onstant' Gm2p=~
 �= 5� 10�39 needs to be explained, whi
his equivalent to saying that the mass of the proton needs to be explained (Carr and Rees 1979). Andalong the same lines, we need to explain the 
onstant involved in the observed 
orrelation betweenthe spin angular momenta and masses of astronomi
al obje
ts, whi
h is roughly GM2=J
 �= 1=300(Wesson 1983). In other words, we get no more out of dimensional analysis and a 
hoi
e of unitsthan is already present in the underlying equations, and neither te
hnique is a substitute for properphysi
s.The physi
s of explaining the 
harge of the ele
tron or the mass of a proton, referred to above,probably lies in the future. However, some 
omments 
an be made now. As regards e, it is anobserved fa
t that � is energy or distan
e-dependent. Equivalently, e is not a fundamental 
onstantin the same 
lass as 
, h and G. The 
urrent explanation for this involves va
uum polarization,whi
h e�e
tively s
reens the 
harge of one parti
le as experien
ed by another (see Se
tion 1.4). Thisme
hanism is depressingly me
hani
al to some �eld theorists, and in attributing an a
tive role tothe va
uum would have been anathema to Einstein. [There are also alternative explanations for it,su
h as the in
uen
e of a s
alar �eld, as dis
ussed in Nodvik (1985) and Chapter 5.℄ However, thephilosophy of trying to understand the ele
tron 
harge, rather than just a

epting it as a given, hasundoubted merit. The same applies to the masses of the elementary parti
les, whi
h however areunquantized and so present more of a 
hallenge. The main question is not whether we wish to explain
harges and masses, but rather what is the best approa
h.In this regard, we note that both are geometrizable (Hoyle and Narlikar 1974; Wesson 1992). Therest mass of a parti
le m is the easiest to treat, sin
e using G or h we 
an 
onvert m to a length:xm � Gm
2 or xm � hm
 :Physi
ally, the 
hoi
e here would 
onventionally be des
ribed as one between gravitational or atomi
units, a ploy whi
h has been used in several theories that deal with the nature of mass (see Wesson1978 for a review). Mathemati
ally, the 
hoi
e is one of 
oordinates, provided we absorb the 
onstantsand view mass as on the same footing as time and spa
e (see Chapter 7). The ele
tri
 
harge of a11



parti
le q is harder to treat, sin
e it 
an only be geometrized by in
luding the gravitational 
onstantvia xq � (G=
4)1=2q. This, together with the trite but irrefutable fa
t that masses 
an 
arry 
hargesbut not the other way round, suggests that mass is more fundamental than 
harge.1.3 General relativityIn the original form of this theory due to Einstein, spa
e is regarded as a 
onstru
t in whi
h onlythe relations between obje
ts have meaning. The theory agrees with all observations of gravitationalphenomena, but the best books that deal with it are those whi
h give a fair treatment of the theory's
on
eptual impli
ations. Notably, those by Weinberg (1972), Misner, Thome and Wheeler (1973),Rindler (1977) and Will (1993). We should also mention the book by Jammer (1961) on 
on
epts ofmass; and the 
onferen
e pro
eedings edited by Barbour and P�ster (1995) on the idea due to Ma
hthat mass lo
ally depends on the distribution of matter globally. The latter was of 
ourse a majormotivation for Einstein, and while not in
orporated into standard general relativity is an idea thatwill reo

ur in subsequent 
hapters.The theory is built on 10 dimensionless potentials whi
h are the independent elements in a 4 x 4metri
 tensor g�� (�; � = 0� 3). These de�ne the square of the distan
e between 2 nearby points in4D via ds2 = g��dx�dx�. (Here a repeated index upstairs and downstairs is summed over, and belowwe will use the metri
 tensor to raise and lower indi
es on other tensors.) The 
oordinates x� are ina lo
al limit identi�ed as x0 = 
t, x1 = x, x2 = y, x3 = z using Cartesians. However, be
ause thetheory employs tensors and therefore gives relations valid in any system of 
oordinates (
ovarian
e),the spa
e and time labels may be mixed up and 
ombined arbitrarily. Thus spa
e and time are notdistin
t entities. Also, the role of the speed of light 
 is to dimensionally transpose a quantity withthe dimension T to one with dimension L, so that all 4 of x� may be treated on the same footing.Partial derivatives with respe
t to the x� 
an be 
ombined to produ
e the Christo�el symbol �
��,whi
h enables one to 
reate a 
ovariant derivative su
h that the derivative of a ve
tor is now given byr�V� = �V�=�x� � �
��V
 . From g��, and its derivatives, one 
an obtain the Ri

i tensor R��, theRi

i s
alar R and the Einstein tensor G�� � R�� � Rg��=2. The last is 
onstru
ted so as to havezero 
ovariant divergen
e: r�G�� = 0. These tensors enable us to look at the relationship betweengeometry and matter. Spe
i�
ally, the Einstein tensor G��, 
an be 
oupled via a 
onstant � to theenergy-momentum tensor T�� that des
ribes properties of matter: G�� = �T��. These are Einstein's�eld equations. In the weak-�eld limit where g00 �= (1 + 2�=
2) for a 
uid of density �, Einstein'sequations give ba
k Poisson's equation r2� = 4�G�. This presumes that the 
oupling 
onstant is� = 8�G=
4, and shows that Einstein gravity 
ontains Newton gravity. However, Einstein's �eldequations have only been rigorously tested in the solar system and the binary pulsar, where thegravitational �eld exists essentially in empty spa
e or va
uum. In this 
ase, T�� = 0 and the �eldequations G�� = 0 are equivalent to the simpler setR�� = 0 (�; � = 0� 3) : (1.1)These 10 relations serve in prin
iple to determine the 10 g��, and are the ones veri�ed by observations.Notwithstanding this, let us 
onsider the full equations for a perfe
t isotropi
 
uid with density� and pressure p (i.e. there is no vis
osity, and the pressure is equal in the 3 spatial dire
tions).Then the energy-momentum tensor is T�� = (p+ �
2)���� � pg�� where ��, are the 4-velo
ities (seebelow). This is 
onstru
ted so as to have zero divergen
e, and the equation of 
ontinuity and theequations of motion for the 3 spatial dire
tions are derived from the 4 
omponents of r�T �� = 0.The 
ovariant derivative here a
tually treats the metri
 tensor as a 
onstant, so it is possible to adda term proportional to this to either the left-hand side or right-hand side of Einstein's equations.The former usage is traditional, so the full �eld equations are 
ommonly written12



R�� � Rg��2 + �g�� = 8�G
4 �(p+ �
2)���� � pg��� : (1.2)Here � is the 
osmologi
al 
onstant, and its modulus is known to be small. It 
orresponds in theweak-�eld limit to a for
e per unit mass j�j
2r=3 whi
h in
reases with radius r from the 
entre of(say) the solar system, but is not observed to signi�
antly a�e
t the orbits of the planets. However,it 
ould be insigni�
ant lo
ally but signi�
ant globally, as implied by its dimensions (L�2) In thisregard, it is instru
tive to move the � term over to the other side of the �eld equations and in
orporateit into T�� as a \va
uum" 
ontribution to the density and pressure:�� = �
28�G p� = �
28�G : (1.3)This \va
uum 
uid" has the equation of state p� = ���
2, and while �� , is small by laboratorystandards it 
ould in prin
iple be of the same order of magnitude as the material density of thegalaxies (10�29�10�31 gm 
m�3). Also, while j�j is 
onstrained by general relativity and observationsof the present universe, there are arguments 
on
erning the stability of the va
uum from quantum�eld theory whi
h imply that it 
ould have been larger in the early universe. But � (and G; 
) aretrue 
onstants in the original version of general relativity, so models of quantum va
uum transitionsinvolve step-like phase 
hanges (see e.g. Henriksen, Emslie and Wesson 1983). It should also be notedthat while matter in the present universe has a pressure that is positive or 
lose to zero (\dust"),there is in prin
iple no reason why in the early universe or other exoti
 situations it 
annot be takennegative. Indeed, any mi
ros
opi
 pro
ess whi
h 
auses the parti
les of a 
uid to attra
t ea
h other
an in a ma
ros
opi
 way be des
ribed by p < 0 (the va
uum treated 
lassi
ally is a simple example).In fa
t, it is 
lear that p and � in general relativity are phenomenologi
al, in the sense that they arelabels for unexplained parti
le pro
esses. It is also 
lear that the prime fun
tion of G and 
 is todimensionally transpose matter labels su
h as p and � so that they mat
h the geometri
al obje
ts ofthe theory.The pressure and density are intimately 
onne
ted to the motion of the 
uid whi
h they de-s
ribe. This 
an be appre
iated by looking at the general equation of motion, in the form derived byRay
haudhuri, and the 
ontinuity or 
onservation equation:�R� 3R� = 2(w2 � �2)� 4�G
2 (3p+ �
2)_�
2 = �(p+ �
2)3 _RR : (1.4)Here R is the s
ale fa
tor of a region of 
uid with vorti
ity w, shear �, and uniform pressure anddensity (see Ellis 1984: a dot denotes the total derivative with respe
t to time, and R should not be
onfused with the Ri

i s
alar introdu
ed above and should not be taken as implying the existen
e of aphysi
al boundary). From the �rst of (1.4) we see that the a

eleration 
aused by a portion of the 
uiddepends on the 
ombination (3p+�
2), so for mass to be attra
tive and positive we need (3p+�
2) > 0.From the se
ond of (1.4), we see that the rate of 
hange of density depends on the 
ombination(p+�
2), so for matter to be stable in some sense we need (p+�
2) > 0. These inequalities, sometimes
alled the energy 
onditions, should not however be 
onsidered sa
rosan
t. Indeed, gravitationalenergy is a slippery 
on
ept in general relativity, and there are several alternative de�nitions of\mass" (Hayward 1994). These go beyond the traditional 
on
epts of a
tive gravitational mass asthe agent whi
h 
auses a gravitational �eld, passive gravitational mass as the agent whi
h feels it,and inertial mass as the agent whi
h measures energy 
ontent (Bonnor 1989). What the above shows13



is that in a 
uid-dynami
al 
ontext, (3p + �
2) is the gravitational energy density and (p + �
2) isthe inertial energy density.For a 
uid whi
h is homogeneous and isotropi
 (� uniform), without vorti
ity or shear, Einstein'sequations redu
e to 2 relations 
ommonly 
alled after Friedmann:8�G� = 3R2 (k
2 + _R2)� �
2 ;8�Gp
2 = � 1R2 (k
2 + _R2 + 2 �RR) + �
2 : (1.5)Here k = �1; 0 is the 
urvature 
onstant whi
h des
ribes the departure of the 3D part of spa
etimefrom 
at Minkowski (spe
i�ed by g�� = ��� = diagonal +1, -1, -1, -1). There are many solutionsof (1.5) whi
h are more or less in agreement with 
osmologi
al observations. The simplest is theEinstein-de Sitter model. It has k = 0, � = 0 , p = 0, � = 1=6�Gt2 and a s
ale fa
tor R(t) whi
hgrows as t2=3. However, it requires about 2 orders of magnitude more matter to be present than inthe visible galaxies, a topi
 we will return to in Se
tions 1.6 and 4.2. In general, solutions of (1.5)are 
alled Friedmann-Robertson-Walker (FRW), where the last two names refer to the workers whoderived the metri
 for these uniform 
osmologi
al models. This metri
 is 
ommonly given in twodi�erent 
oordinate systems, whose justi�
ation has to do with whether one takes the global viewwherein all dire
tions in 3D spa
e are treated the same, or the lo
al view wherein quantities aremeasured from us as `
entre'. Noting that the radial 
oordinates r are di�erent, the (3D) isotropi
and non-isotropi
 forms of the metri
 are given by:ds2 = 
2dt2 � R2(t)(1 + kr2=4)2 [dr2 + r2d
2℄ds2 = 
2dt2 � R2(t)� dr2(1� kr2) + r2d
2� : (1.6)Here d
2 � d�2 + sin2 �d�2 de�nes the angular part of the metri
 in spheri
al polar 
oordinates. Aphoton whi
h moves radially in the �eld des
ribed by (1.6) is de�ned by ds = 0 with d� = d� = 0.Using the se
ond of (1.6) its (
oordinate-de�ned) velo
ity is thendrdt = �
(1� kr2)1=2R(t) : (1.7)Here the sign 
hoi
e 
orresponds to whether the photon is moving towards or away from us. Theimportant thing, though, is that the \speed" of the photon is not 
.This parameter, as noted in Se
tion 1.2, is 
ommonly regarded as de�ning an upper limit to thespeed of propagation of 
ausal e�e
ts. However, this interpretation is only true in the lo
al, spe
ial-relativity limit. In the global, general-relativity 
ase the size of 
ausally-
onne
ted regions is de�nedby the 
on
ept of the horizon. An ex
ellent a

ount of this is given by its originator, Rindler (1977,p. 215). In the 
osmologi
al appli
ation, there are a
tually 2 kinds of horizon. An event horizonseparates those galaxies we 
an see from those we 
annot ever see even as t!1; a parti
le horizonseparates those galaxies we 
an see from those we 
annot see now at t = t0(�= 2 � 1010 yr). FRWmodels exist whi
h have both kinds of horizon, one but not the other, or neither. A model in thelatter 
ategory is that of Milne. (It has k = �1, � = 0, p = 0 and R(t) proportional to t, andwould solve the so-
alled horizon problem posed by the 3K mi
rowave ba
kground did it not alsohave � = 0.) The distan
e to the parti
le horizon de�nes the size of that part of the universe whi
h14



is in 
ausal 
ommuni
ation with us. The distan
e 
an be worked out quite simply for any k if weassume � = p = 0 (Weinberg 1972, p. 489). In terms of Hubble's parameter now (H0 � _R0=R0) andthe de
eleration parameter now (q0 = � �R0R0= _R02), the distan
es are given by:dk=+1 = 
H0(2q0 � 1)1=2 
os�1� 1q0 � 1� ; q0 > 12dk=0 = 2
H0 = 3
t0 ; q0 = 12dk=�1 = 
H0(1� 2q0)1=2 
osh�1� 1q0 � 1� ; q0 < 12 : (1.8)Even for the middle 
ase, the Einstein-de Sitter model with 
at 3-spa
e se
tions, the distan
e to thehorizon is not 
t0. This 
on�rms what was noted above, and shows that in relativity the purpose of
 is merely to transpose a time to a length.Parti
les with �nite as opposed to zero rest masses move not along paths with ds = 0 but alongpaths with s a minimum. In parti
le physi
s with a spe
ial-relativity metri
, the a
tion prin
iple forthe motion of a parti
le with mass m is 
ommonly written Æ[R mds℄ = 0. Assuming m = 
onstantand repla
ing ds by its general relativity analog using ds2 = g��dx�dx�, the variation leads to 4equations of motion: du
ds + �
��u�u� = 0 : (1.9)This is the geodesi
 equation, and its 4 
omponents serve in prin
iple to determine the 4-velo
itiesu
 � dx
=ds as fun
tions of the 
oordinates. We note that, in addition to the assumption that mis 
onstant, m does not appear in (1.9): general relativity is not a theory of for
es but a theoryof a

elerations. In pra
ti
e, (1.9) 
an only be solved algebrai
ally for 
ertain solutions of the �eldequations. The latter in va
uum are (1.1), and we note here that these 
an be obtained from ana
tion via Æ[R R(�g)1=2d4x℄ = 0. Here g is the determinant of the metri
 tensor, whi
h with the
onventional split of spa
etime into time and spa
e has signature (+ - - -) so g is negative. The �eldequations with matter 
an also be obtained from an a
tion, but split into a geometri
al part anda matter part. However, the split of a metri
 into time and spa
e parts, and the split of the �eldequations into geometri
 and matter parts, are to a 
ertain extent subje
tive.1.4 Parti
le physi
sThis has evolved along di�erent lines than gravitation, and while general relativity is monolithi
,the standard model of parti
le physi
s is 
omposite. Of relevan
e are the books by Ramond (1981),GriÆths (1987), and Collins, Martin and Squires (1989). The last is a good review of the 
onne
tionsbetween parti
le physi
s and 
osmology, and also treats higher-dimensional theories of the types wewill examine in subsequent se
tions. However, the present se
tion is mainly 
on
erned with standard4D parti
le physi
s as based on Lagrangians, and the 
on
eptual di�eren
es between gravitation andquantum theory.The material is ordered by 
omplexity: we 
onsider the equations of Maxwell, S
hrodinger, Klein-Gordon, Dira
, Pro
a and Yang-Mills; and then pro
eed to quantum 
hromodynami
s and thestandard model (in
luding Glashow-Salam-Weinberg theory). As before, there is an emphasis onfundamental 
onstants and the number of parameters required to make theory 
ompatible withobservation. 15



Classi
al ele
tromagnetism is des
ribed by a 4-potential A� and a 4-
urrent J� (
ovariant and
ontravariant quantities di�er now by at most a sign). Then Maxwell's equations are 
ontained inthe tensor relations �F ���x� = 4�
 J� ; F�� � �A��x� � �A��x� ; (1.10)and the identities �F���x
 + �F�
�x� + �F
��x� = 0 (1.11)impli
it in the de�nition of the Faraday tensor F��. However, Maxwell's equations may also beobtained by substituting the LagrangianL = � 116�F ��F�� � 1
J�A� (1.11)in the Euler-Lagrange equations, whi
h give (1.10). Stri
tly, L here is a Lagrangian density andhas dimensions energy/volume, presuming we use the 
.g.s./e.s.u. system of units. These units alsoimply that �0 does not appear (see Se
tion 1.2). Thus 
 is the only 
onstant that �gures, in analogywith the original version of general relativity in whi
h only G=
4 �gured (no 
osmologi
al 
onstant).This is 
onne
ted with the fa
t that these theories des
ribe photons and gravitons with exa
tly zerorest mass.Plan
k's 
onstant ~ 
omes into the �eld theory of parti
les when the 3-momentum p and totalenergy E of a parti
le are repla
ed by spa
e and time operators that a
t on a wave-fun
tion 	. Thusthe pres
riptions p ! (~=i)r and E ! (i~)�=�t applied to the non-relativisti
 energy equationp2=2m + V = E (where m is rest mass and V is the potential energy) result in the S
hrodingerequation � ~22mr2	+ V	 = i~�	�t : (1.12)The path Lagrangian for this is L = T �V in general, whi
h for a parti
le with 
harge q moving witha 3-velo
ity dx=dt� 
 in an ele
tromagneti
 �eld is L = (m=2)(dx=dt)2� (q=
)A�dx�=dt. The patha
tion for this is S = R 21 Ldt, where the integral is between two points. The variation ÆS = 0 givesthe equations of motion of the parti
le between these two points, whi
h in 
lassi
al theory is a uniquepath. In quantum theory, there are non-unique paths, but the sum over paths �exp(iS=~) has theinterpretation that the modulus squared is the probability that the parti
le goes from position 1 to2. Clearly the phase S=~ has to be dimensionless, and this is why ~ appears in the sum over paths.Instead of in
luding it in the latter thing, however, we 
ould instead use �exp(iS) and rede�ne theLagrangian to be L = m2~�dxdt�2 � q
~A�dx�dt : (1.13)This has been pointed out by Hoyle and Narlikar (1974, p. 102; see also Ramond, 1981, p. 35).They go on to argue that sin
e the se
ond term in (1.13) 
ontains another q impli
it in A�, it is the
ombination q2=~ that is important, and in it ~ 
an be absorbed into q2. Also, in the �rst term in(1.13) it is the 
ombination m=~ that is important, and in it ~ 
an be absorbed into m. Thus theLagrangian redu
es ba
k to the form given before.16



A similar pres
ription to that above applied to the relativisti
 energy equation E2 � p2
2 = m2
4or p�p� = m2
2 for a freely-moving parti
le (V = 0) results in the Klein-Gordon equation� 1
2 �2��t2 +r2� = �m
~ �2� : (1.14)Here � is a single s
alar �eld and the Lagrangian isL = 12��1
 ���t �2 � (r�)2�� 12�m
~ �2� : (1.15)Equations (1.14) and (1.15) des
ribe a spin-0 parti
le in 
at spa
etime. We will 
onsider the gener-alization to 
urved spa
etime below.Spin-1/2 parti
les were des
ribed in another equation formulated by Dira
, who `fa
torized' theenergy relation p�p� = m2
2 with the help of four 4� 4 matri
es 
�. These latter are related to themetri
 tensor of Minkowski spa
etime by the relation 
�
� + 
�
� = 2���. The Dira
 equation isi~
� �	�x� �m
	 = 0 : (1.16)Here 	 is a bi-spinor �eld, whi
h 
an be thought of as a 4-element 
olumn matrix (though it is not a4-ve
tor) in whi
h the upper two elements represent the two possible spin states of an ele
tron whilethe lower two elements represent the two possible spin states of a positron. The Lagrangian isL = i~
	
� �	�x� �m
2		 : (1.17)Here 	 is the adjoint spinor de�ned by 	 � 	+
0, where 	+ is the usual Hermitian or transpose
onjugate obtained by transposing 	 from a 
olumn to a row matrix and 
omplex-
onjugating itselements. The Lagrangian (1.17) is for a free parti
le. It is invariant under the global gauge or phasetransformation 	 ! ei�	 (where � is any real number), be
ause 	 ! e�i�	 and the exponentials
an
el out in the 
ombination 		. But it is not invariant under the lo
al gauge transformation	 ! ei�(x)	 whi
h depends on lo
ation in spa
etime. If the prin
iple of lo
al gauge invarian
e isdesired, it is ne
essary to repla
e (1.17) byL = i~
	
� �	�x� �m
2		� q	
�	A� : (1.18)Here A� is a potential whi
h we identify with ele
tromagnetism and whi
h 
hanges under lo
al gaugetransformations a

ording to A� ! A� + ��=�x� where �(x�) is a s
alar fun
tion. In fa
t, we
an say that the requirement of lo
al gauge invarian
e for the Dira
 Lagrangian (1.18) obliges theintrodu
tion of the �eld A� typi
al of ele
tromagnetism.A
tually the Lagrangian (1.18) should be even further extended by in
luding a `free' term for thegauge �eld. In this regard, the transformation A� ! A� + ��=�x� leaves F�� un
hanged, but nota term like A�A�. The appropriate term to add to (1.18) is therefore (�1=16�)F ��F��, so the fullDira
 Lagrangian is L = i~
	
� �	�x� �m
2		� 116�F ��F�� � q	
�	A� : (1.19)If we de�ne a 
urrent density J� � 
q(	
�	), the last two terms give ba
k Maxwell's Lagrangian(1.11). The Lagrange density (1.19) des
ribes ele
trons or positrons intera
ting with an ele
tromag-17



neti
 �eld 
onsisting of massless photons. However, a term like the one we just dis
arded (A�A�)may be a

eptable in a theory of massive gauge parti
les. Indeed, a �eld derived from a ve
torpotential A� asso
iated with a parti
le of �nite rest mass m is des
ribed by the Pro
a equation�F ���x� + �m
~ �2A� = 0 : (1.20)This des
ribes a spin-1 parti
le su
h as a massive photon, and 
an be obtained from the LagrangianL = � 116�F ��F�� + 18��m
~ �2A�A� : (1.21)Again we see the 
ombination m=~, so ~ may be absorbed here if so desired as it has been elsewhere.If we 
onsider two 4-
omponent Dira
 �elds, it 
an be shown that a lo
ally gauge-invariant La-grangian 
an only be obtained if we introdu
e three ve
tor �elds (A1�, A2�, A3�). These 
an be thoughtof as a kind of 3-ve
tor A�. It is also ne
essary to 
hange the de�nition of F��, used above. The 3
omponents of the new quantity (F 1��, F 2��, F 3��) 
an again be thought of as a kind of ve
tor, wherenow F�� � [�A�=�x� � �A�=�x� � (2q=~
)(A� �A�)℄. Further, the three Pauli matri
es (�1, �2, �3)
an be regarded as a ve
tor � . Then with dot produ
ts between ve
tors de�ned in the usual way,the Lagrangian isL = i~
	
� �	�x� �m
2		� 116�F �� � F�� � (q	
��	) �A� : (1.22)Here 	 
an be thought of as a 
olumnmatrix with elements 	1 and 	2, ea
h of whi
h is a 4-
omponentDira
 spinor. The latter still des
ribe spin-1/2 parti
les of mass m (where we have assumed bothparti
les to have the same mass for simpli
ity), and they intera
t with three gauge �elds A1�, A2�,A3� whi
h by gauge invarian
e must be massless. The kind of gauge invarian
e obeyed by (1.22) isa
tually more 
omplex than that involving global and lo
al phase transformations with ei� 
onsideredabove. There 	 was a single spinor, whereas here 	 is a 2-spinor 
olumn matrix. This leads us to
onsider a 2� 2 matrix whi
h we take to be unitary (U+U = 1). In fa
t the �rst two terms in (1.22)are invariant under the global transformation 	! U	, be
ause 	! 	U+ so the 
ombination 		is invariant. Just as any 
omplex number of modulus 1 
an be written as ei� with � real, any unitarymatrix 
an be written U = e1H with H Hermitian (H+ = H). Sin
e H is a 2� 2 matrix it involves4 real numbers, say � and a1, a2, a3 whi
h 
an be regarded as the 
omponents of a 3-ve
tor a. Asbefore, let � be the 3-ve
tor whose 
omponents are three 2�2 Pauli matri
es, and let 1 stand for the2� 2 unit matrix. Then without loss of generality we 
an write H = �1 + � � a, so U = ei�ei� �a. The�rst fa
tor here is the old phase transformation. The se
ond is a 2�2 unitary matrix whi
h is spe
ialin that the determinant is a
tually 1. Thus 	 ! ei� �a	 is a global spe
ial-unitary 2-parameter, orSU(2), transformation. It should be re
alled that this global invarian
e only involves the �rst twoterms of the Lagrangian (1.22), whi
h resemble the Lagrangian (1.17) of Dira
. The passage to lo
alinvarian
e along lines similar to those 
onsidered above leads to the other terms in the Lagrangian(1.22) and was made by Yang and Mills.The full Yang-Mills Lagrangian (1.22) is invariant under lo
al SU(2) gauge transformations, andleads to �eld equations that were originally supposed to des
ribe two equal-mass spin-1/2 parti
lesintera
ting with three massless spin-1 (ve
tor) parti
les. In this form the theory is somewhat unre-alisti
, but still useful. For example, if we drop the �rst two terms in (1.22) we obtain a Lagrangianfor the three gauge �elds alone whi
h leads to an interesting 
lassi
al-type �eld theory that resem-bles Maxwell ele
trodynami
s. This 
orresponden
e be
omes 
lear if like before we de�ne 
urrentsJ� � 
q(	
��	), whereby the last two terms in (1.22) give a gauge-�eld Lagrangian18



L = � 116�F �� � F�� � 1
J� � A� : (1.23)This 
losely resembles the Maxwell Lagrangian (1.11). But of 
ourse (1.23) gives rise to a 
on-siderably more 
ompli
ated theory, solutions of whi
h have been reviewed by A
tor (1979). Someof these represent magneti
 monopoles, whi
h have not been observed. Some represent instantonsand merons, whi
h are hypotheti
al parti
les that tunnel between topologi
ally distin
t va
uum re-gions. Tunneling 
an in prin
iple be important 
osmologi
ally. For example, Vilenkin (1982) hassuggested that a 
ertain type of instanton tunneling to de Sitter spa
e from nothing 
an give birthto an in
ationary universe. However, it is doubtful if the kinds of parti
les predi
ted by pure SU(2)Yang-Mills theory will ever have pra
ti
al appli
ations. The real importan
e of this theory is that itshowed it was feasible to use a symmetry group involving non-
ommuting 2�2 matri
es to 
onstru
ta non-Abelian gauge theory. This idea led to more su

essful theories, notably one for the strongintera
tion based on SU(3) 
olour symmetry.Quantum 
hromodynami
s (QCD) is des
ribed by 3 
oloured Dira
 spinors that 
an be denoted	red, 	blue, 	green and 8 gauge �elds given by a kind of 8-ve
tor A�. Ea
h of 	r, 	b, 	g is a 4-
omponent Dira
 spinor, and it is 
onvenient to regard them as the elements of a 
olumn matrix 	.This des
ribes the 
olour states of a massive spin-1/2 quark. The 8 
omponents of A�, are asso
iatedwith the 8 Gell-Mann matri
es (�1�8), whi
h are the SU(3) equivalents of the Pauli matri
es ofSU(2), and des
ribe massless spin-1 gluons. The Lagrangian for QCD 
an be 
onstru
ted by addingtogether 3 Dira
 Lagrangians like (1.17) above (one for ea
h 
olour), insisting on lo
al SU(3) gaugeinvarian
e (whi
h brings in the 8 gauge �elds), and adding in a free gauge-�eld term (using F�� asde�ned above for the original Yang-Mills theory). The 
omplete Lagrangian isL = i~
	
� �	�x� �m
2		� 116�F �� � F�� � (q	
��	) � A� : (1.24)This resembles (1.22) above. However, the ele
tri
 
harge of a quark needs to be a fra
tion of e inorder to a

ount for the 
ommon hadrons as quark 
omposites. And parti
le physi
s is best des
ribedby 6 quarks with di�erent 
avours (d, u, s, 
, b, t) and di�erent masses m. This means we reallyneed 6 versions of (1.24) with di�erent masses. A gluon does not 
arry ele
tri
 
harge, but it does
arry 
olour 
harge. This is unlike its analogue the photon in ele
trodynami
s, allowing bound gluonstates (glueballs) and making 
hromodynami
s generally quite 
ompli
ated.We do not need to go into the intri
a
ies of QCD, espe
ially sin
e good reviews are available(Ramond 1981; Llewellyn Smith 1983; GriÆths 1987; Collins, Martin and Squires 1989). But a
ouple of points related to 
harges and masses are relevant to our dis
ussion. In the 
ase of ele
tronsintera
ting via photons, the Dira
 Lagrangian and the fa
t that � � e2=~
 �= 1=137 is small allowsperturbation analysis to be used to produ
e very a

urate models. Indeed, quantum ele
trodynami
s(QED) gives predi
tions that are in ex
ellent agreement with experiment. However, the 
ouplingparameter whose asymptoti
 value is the traditional �ne-stru
ture 
onstant is a
tually energy ordistan
e dependent. As mentioned in Se
tion 1.2, this is 
ommonly as
ribed to va
uum polarization.Thus, a positive 
harge (say) surrounded by virtual ele
trons and positrons tends to attra
t theformer and repel the latter. (Virtual parti
les do not obey Heisenberg's un
ertainty relation andin modern quantum �eld theory the va
uum is regarded as full of them.) There is therefore as
reening pro
ess, whi
h means that the e�e
tive value of the embedded 
harge (and �) in
reasesas the distan
e de
reases. In analogy with QED, there is a similar pro
ess in QCD, but due to thedi�erent nature of the intera
tion the 
oupling parameter de
reases as the distan
e de
reases. Thisis the origin of asymptoti
 freedom, whose 
onverse is that quarks in (say) a proton feel a strongrestoring for
e if they move outwards and are in fa
t 
on�ned. In addition to the variable nature of
oupling `
onstants' and 
harges, the masses in QCD are also not what they appear to be. The mwhi
h appears in a Lagrangian like (1.24) is not really a given parameter, but is believed to arise19



from the spontaneous symmetry breaking whi
h exists when a symmetry of the Lagrangian is notshared by the va
uum. Thus a manifestly symmetri
 Lagrangian with massless gauge-�eld parti
les
an be rewritten in a less symmetri
 form by rede�ning the �elds in terms of 
u
tuations about aparti
ular ground state of the va
uum. This results in the gauge-�eld parti
les be
oming massiveand in the appearan
e of a massive s
alar �eld or Higgs parti
le. In QCD. the quarks are initiallytaken to be massless, but if they have Yukawa-type 
ouplings to the Higgs parti
le then they a
quiremasses. The Higgs me
hanism in QCD, however, is really imported from the theory of the weakintera
tion, and has been mentioned here to unders
ore that the masses of the quarks are not reallyfundamental parameters.The theory of the weak intera
tion was originally developed by Fermi as a way of a

ounting forbeta de
ay, but is today mainly asso
iated with Glashow, Weinberg and Salam who showed thatit was possible to unify the weak and ele
tromagneti
 intera
tions (for reviews see Salam 1980 andWeinberg 1980). As it is formulated today, the theory of the weak intera
tion involves mediation by3 very massive intermediate ve
tor (spin-1) bosons, two of whi
h (W�) are ele
tri
ally 
harged andone of whi
h (Z0) is neutral. These 
an be 
ombined with the photon of ele
tromagnetism via thesymmetry group SU(2)
 U(1), whi
h is however spontaneously broken by the me
hanism outlinedin the pre
eding paragraph. A
tually, the massive Z0 and the massless photon are 
ombinations ofstates that depend on a weak mixing angle �w, whose value is diÆ
ult to 
al
ulate from theory butis �w �= 29o from experiment. The theory of the weak intera
tion, like QED and QCD, involves a
oupling parameter whi
h is not 
onstant.What we have been dis
ussing in the latter part of this se
tion are parts of the standard model ofparti
le physi
s, whi
h symboli
ally uni�es the ele
tromagneti
, weak and strong intera
tions via thesymmetry group U(1)
 SU(2)
 SU(3). An appealing feature of this theory is that with in
reasingenergy the ele
tromagneti
 
oupling in
reases while the weak and strong 
ouplings de
rease, suggest-ing that they 
ome together at some unifying energy. This, however, is not known: it is probablyof order 1016 GeV, but 
ould be as large as the Plan
k mass of order 1019 GeV (see Weinberg 1983;Llewellyn Smith 1983; Ellis 1983; Kibble 1983; GriÆths 1987, p. 77; Collins, Martin and Squires1989, p. 159). Also, there are un
ertainties in the theory, notably to do with the QCD se
tor wherethe numbers of 
olors and 
avors are 
onventionally taken as 3 and 6 respe
tively but 
ould bedi�erent. This means that while in the 
onventional model there are 6 quark masses and 6 leptonmasses, there 
ould be more. In fa
t, if we in
lude 
ouplings and other things, there are. at least20 parameters in the theory (Ellis 1983). One might hope to redu
e this by using a simple unifyinggroup for U(1), SU(2) and SU(3). but the minimal example of SU(5) does not a
tually help mu
hin this regard. And then there is the perennial question: What about gravity?1.5 Kaluza-Klein theoryThe idea that the world may have more than 4 dimensions is due to Kaluza (1921), who with abrilliant insight realized that a 5D manifold 
ould be used to unify Einstein's theory of generalrelativity (Se
tion 1.3) with Maxwell's theory of ele
tromagnetism (Se
tion 1.4). After some delay,Einstein endorsed the idea, but a major impetus was provided by Klein (1926). He made the
onne
tion to quantum theory by assuming that the extra dimension was mi
ros
opi
ally small,with a size in fa
t 
onne
ted via Plan
k's 
onstant h to the magnitude of the ele
tron 
harge e(Se
tion 1.2). Despite its elegan
e, though, this version of Kaluza-Klein theory was largely e
lipsedby the explosive development �rst of wave me
hani
s and then of quantum �eld theory. However,the development of parti
le physi
s led eventually to a resurgen
e of interest in higher-dimensional�eld theories as a means of unifying the long-range and short-range intera
tions of physi
s. Thus didKaluza-Klein 5D theory lay the foundation for modern developments su
h as 11D supergravity and10D superstrings (Se
tion 1.6). In fa
t, there is some ambiguity in the s
ope of the phrase \Kaluza-20



Klein theory". We will mainly use it to refer to a 5D �eld theory, but even in that 
ontext there areseveral versions of it. The literature is 
onsequently enormous, but we 
an mention the 
onferen
epro
eedings edited by De Sabbata and S
hmutzer (1983), Lee (1984) and Appelquist, Chodos andFreund (1987). A re
ent 
omprehensive review of all versions of Kaluza-Klein theory is the arti
le byOverduin and Wesson (1997a). The latter in
ludes a short a

ount of what is referred to by di�erentworkers as non-
ompa
ti�ed, indu
ed-matter or spa
e-time-matter theory. Sin
e this is the subje
tof the following 
hapters, the present se
tion will be restri
ted to a summary of the main features oftraditional Kaluza-Klein theory.This theory is essentially general relativity in 5D, but 
onstrained by two 
onditions. Physi
ally,both have the motivation of explaining why we per
eive the 4 dimensions of spa
etime and (ap-parently) do not see the �fth dimension. Mathemati
ally, they are somewhat di�erent, however.(a) The so-
alled `
ylinder' 
ondition was introdu
ed by Kaluza, and 
onsists in setting all partialderivatives with respe
t to the �fth 
oordinate to zero. It is an extremely strong 
onstraint that hasto be applied at the outset of 
al
ulation. Its main virtue is that it redu
es the algebrai
 
omplexityof the theory to a manageable level. (b) The 
ondition of 
ompa
ti�
ation was introdu
ed by Klein,and 
onsists in the assumption that the �fth dimension is not only small in size but has a 
losedtopology (i.e. a 
ir
le if we are only 
onsidering one extra dimension). It is a 
onstraint that may beapplied retroa
tively to a solution. Its main virtue is that it introdu
es periodi
ity and allows one touse Fourier and other de
ompositions of the theory.There are now 15 dimensionless potentials, whi
h are the independent elements in a symmetri
5 � 5 metri
 tensor gAB (A; B = 0 � 4: 
ompare se
tion 1.3). The �rst 4 
oordinates are thoseof spa
etime, while the extra one x4 = l (say) is sometimes referred to as the \internal" 
oordinatein appli
ations to parti
le physi
s. In perfe
t analogy with general relativity, one 
an form a 5DRi

i tensor RAB, a 5D Ri

i s
alar R and a 5D Einstein tensor GAB � RAB � RgAB=2. The �eldequations would logi
ally be expe
ted to be GAB = kTAB with some appropriate 
oupling 
onstantk and a 5D energy-momentum tensor. But the latter is unknown, so from the time of Kaluza andKlein onward mu
h work has been done with the `va
uum' or `empty' form of the �eld equationsGAB = 0. Equivalently, the de�ning equations areRAB = 0 (A; B = 0� 4) : (1.25)These 15 relations serve to determine the 15 gAB, at least in prin
iple.In pra
ti
e, this is impossible without some starting assumption about gAB. This is usually
onne
ted with the physi
al situation being investigated. In gravitational problems, an assumptionabout gAB = gAB(x
) is 
ommonly 
alled a 
hoi
e of 
oordinates, while in parti
le physi
s it is
ommonly 
alled a 
hoi
e of gauge. We will meet numerous 
on
rete examples later, where given thefun
tional form of gAB(x
) we will 
al
ulate the 5D analogs of the Christo�el symbols �CAB whi
h thengive the 
omponents of RAB (Chapters 2-4). Kaluza was interested in ele
tromagnetism, and realizedthat gab 
an be expressed in a form that involves the 4-potential A� that �gures in Maxwell's theory.He adopted the 
ylinder 
ondition noted above, but also put g44 = 
onstant. We will do a generalanalysis of the ele
tromagneti
 problem later (Chapter 5), but here we look at an intermediate 
asewhere gAB = gAB(x�), g44 = ��2(x�). This illustrates well the s
ope of Kaluza-Klein theory, andhas been worked on by many people, in
luding Jordan (1947, 1955). Bergmann (1948), Thiry (1948),Lessner (1982), and Liu and Wesson (1997). The 
oordinates or gauge are 
hosen so as to write the5D metri
 tensor in the formgAB = � (g�� � �2�2A�A�) ���2A����2A� ��2 � ; (1.26)where � is a 
oupling 
onstant. Then the �eld equations (1.25) redu
e to21



G�� = �2�22 T�� � 1��r�r��� g�����r�F�� = �3r��� F���� = ��2�34 F��F �� : (1.27)Here G�� and F�� are the usual 4D Einstein and Faraday tensors (see se
tions 1.3 and 1.4 re-spe
tively), and T��, is the energy-momentum tensor for an ele
tromagneti
 �eld given by T�� =(g��F
ÆF 
Æ=4� F 
�F�
)=2. Also � � g��r�r� is the wave operator, and the summation 
onventionis in e�e
t. Therefore we re
ognize the middle member of (1.27) as the 4 equations of ele
tromag-netism modi�ed by a fun
tion, whi
h by the last member of (1.27) 
an be thought of as dependingon a wave-like s
alar �eld. The �rst member of (1.27) gives ba
k the 10 Einstein equations of 4Dgeneral relativity, but with a right-hand side whi
h in some sense represents energy and momentumthat are e�e
tively derived from the �fth dimension. In short, Kaluza-Klein theory is in general auni�ed a

ount of gravity, ele
tromagnetism and a s
alar �eld.Kaluza's 
ase g44 = ��2 = �1 together with the identi�
ation � = �16�G=
4�1=2 makes (1.27)read G�� = 8�G
4 T��r�F�� = 0 : (1.28)These are of 
ourse the straight Einstein and Maxwell equations in 4D, but derived from va
uumin 5D, a 
onsequen
e whi
h is sometimes referred to as the Kaluza-Klein \mira
le". However, theserelations involve by (1.27) the 
hoi
e of ele
tromagneti
 gauge F��F �� = O and have no 
ontributionfrom the s
alar �eld. The latter 
ould well be important, parti
ularly in appli
ation to parti
lephysi
s. In the language of that subje
t, the �eld equations (1.25) of Kaluza-Klein theory des
ribea spin-2 graviton, a spin-1 photon and a spin-0 boson whi
h is thought to be 
onne
ted with howparti
les a
quire mass. The �eld equations 
an also be derived from a 5D a
tion Æh R R(�g)1=2d5xi =0, in a way analogous to what happens in 4D Einstein theory.It is also possible to put Kaluza-Klein theory into formal 
orresponden
e with other 4D theories,notably the Brans-Di
ke s
alar-tensor theory (see Overduin and Wesson 1997a). This theory issometimes 
ast in a form where the s
alar �eld is e�e
tively disguised by putting the fun
tionaldependen
e into G, the gravitational `
onstant'. In this regard it belongs to a 
lass of 4D theories,whi
h in
ludes ones by Dira
, Hoyle and Narlikar and Canuto et al., where the 
onstants are allowedto vary with 
osmi
 time (see Wesson 1978 and Barbour and P�ster 1995 for reviews). However, itshould be stated with strength that Kaluza-Klein theory is essentially 5D, and trying to 
ast it into4D form is te
hni
ally awkward. It should also be noted that the reasons for treating 4D fundamental
onstants in this way are 
on
eptually obs
ure.1.6 Supergravity and superstringsThese are based on the idea of supersymmetry, wherein ea
h boson (integral spin) is mat
hed witha fermion (half integral spin). Thus the parti
le whi
h is presumed to mediate 
lassi
al gravity (the22



graviton) has a partner (the gravitino). This kind of symmetry is natural, insofar as parti
le physi
sneeds to a

ount for both bosoni
 and fermioni
 matter �elds. But it is also attra
tive be
ause it leadsto a 
an
ellation of the enormous zero-point �elds whi
h otherwise exist but whose energy densityis not manifested in the 
urvature of spa
e (this is related to the so-
alled 
osmologi
al 
onstantproblem, whi
h is dis
ussed elsewhere). The literature on supergravity and superstrings is diverse,but we 
an mention the review arti
les by Witten (1981) and Du� (1996); and the books by West(1986) and Green, S
hwan and Witten (1987). The status of the ele
tromagneti
 zero-point �eld hasbeen dis
ussed by Wesson (1991). There is an obvious 
onne
tion between 5D Kaluza-Klein theory,11D supergravity and 10D superstrings. But while the former is more-or-less worked out, the latterare still in a state of development with an un
ertain prognosis where it 
omes to their relevan
e tothe real world. For this reason, and also be
ause supersymmetry lies outside the s
ope of the rest ofthis work, we will 
ontent ourselves with a short history.Supersymmetri
 gravity or supergravity began life as a 4D theory in 1976 but qui
kly made thejump to higher dimensions (\Kaluza-Klein supergravity"). It was parti
ularly su

essful in 11D,for three prin
ipal reasons. First, Nahm showed that 11 was the maximum number of dimensions
onsistent with a single graviton (and an upper limit of two on parti
le spin). This was followedby Witten's proof that 11 was also the minimum number of dimensions required for a Kaluza-Kleintheory to unify all the for
es in the standard model of parti
le physi
s (i.e. to 
ontain the gauge groupsof the strong SU(3) and ele
troweak SU(2)
U(1) intera
tions). The 
ombination of supersymmetrywith Kaluza-Klein theory thus appeared to uniquely �x the dimensionality of the world. Se
ond,whereas in lower dimensions one had to 
hoose between several possible 
on�gurations for the matter�elds, Cremmer et al. demonstrated in 1978 that in 11D there is a single 
hoi
e 
onsistent withthe requirements of supersymmetry (in parti
ular, that there be equal numbers of Bose and Fermidegrees of freedom). In other words, while a higher-dimensional energy-momentum tensor was stillrequired, its form at least appeared somewhat natural. Third, Freund and Rubin showed in 1980that 
ompa
ti�
ation of the 11D model 
ould o

ur in only two ways: to 7 or 4 
ompa
t dimensions,leaving 4 (or 7, respe
tively) ma
ros
opi
 ones. Not only did 11D spa
etime appear to be spe
iallyfavored for uni�
ation, but it also split perfe
tly to produ
e the observed 4D world. (The otherpossibility, of a ma
ros
opi
 7D world, 
ould however not be ruled out, and in fa
t at least one su
hmodel was 
onstru
ted as well.) Buoyed by these three su

esses, 11D supergravity appeared set bythe mid-1980s as a leading 
andidate for the hoped-for \theory of everything".Unfortunately, 
ertain diÆ
ulties have dampened this initial enthusiasm. For example, the 
om-pa
t manifolds originally envisioned by Witten (those 
ontaining the standard model) turn out notto generate quarks or leptons, and to be in
ompatible with supersymmetry. Their most su

essfulrepla
ements are the 7-sphere and the \squashed" 7-sphere, des
ribed respe
tively by the symme-try groups SO(8) and SO(5) 
 SU(2). But these groups do not 
ontain the minimum symmetryrequirements of the standard model [SU(3)
 SU(2)
 U(1)℄. This is 
ommonly re
ti�ed by addingmatter-related �elds, the \
omposite gauge �elds", to the 11D Lagrangian. Another problem is thatit is very diÆ
ult to build 
hirality (ne
essary for a realisti
 fermion model) into an 11D theory. Avariety of remedies have been proposed for this, in
luding the 
ommon one of adding even more gauge�elds, but none has been universally a

epted. It should also be mentioned that supergravity theoryis marred by a large 
osmologi
al 
onstant in 4D, whi
h is diÆ
ult to remove even by �ne-tuning.Finally, quantization of the theory inevitably leads to anomalies.Some of these diÆ
ulties 
an be eased by des
ending to 10 dimensions: 
hirality is easier toobtain, and many of the anomalies disappear. However, the introdu
tion of 
hiral fermions leads tonew kinds of anomalies. And the primary bene�t of the 11D theory - its uniqueness - is lost: 10Dis not spe
ially favored, and the theory does not break down naturally into 4 ma
ros
opi
 and 6
ompa
t dimensions. (One 
an still �nd solutions in whi
h this happens, but there is no reason whythey should be preferred.) In fa
t, most 10D supergravity models not only require ad ho
 higher-dimensional matter �elds to ensure proper 
ompa
ti�
ation, but entirely ignore gauge �elds arising23



from the Kaluza-Klein me
hanism (i.e. from symmetries of the 
ompa
t manifold). A theory whi
hrequires all gauge �elds to be e�e
tively put in by hand 
an hardly be 
onsidered natural.A breakthrough in solving the uniqueness and anomaly problems of 10D theory o

ured whenGreen and S
hwarz and Gross et al. showed that there were 2 (and only 2) 10D supergravity modelsin whi
h all anomalies 
ould be made to vanish: those based on the groups SO(32) and E8 
 E8,respe
tively. On
e again, extra terms (known as Chapline-Manton terms) had to be added to thehigher-dimensional Lagrangian. This time, however, the addition was not 
ompletely arbitrary; theextra terms were those whi
h would appear anyway if the theory were a low-energy approximationto 
ertain kinds of supersymmetri
 string theory.Supersymmetri
 generalizations of strings, or superstrings, are far from being understood. How-ever, they have some remarkable virtues. For example, they retain the appeal of strings, wherein apoint parti
le is repla
ed by an extended stru
ture, whi
h opens up the possibility of an anomaly-freeapproa
h to quantum gravity. (They do this while avoiding the generi
 predi
tion of ta
hyons, whi
hplagued the old string theories.) Also, it is possible to make 
onne
tions between 
ertain superstringstates and extreme bla
k holes. (This may help resolve the problem of what happens to the informa-tion swallowed by 
lassi
al singularities, whi
h has been long standing in general relativity.) It is truethat, for a while, there was thought to be something of a uniqueness problem for 10D superstrings,in that the groups SO(32) and E8 
 E8 admit �ve di�erent string theories between them. But thisdiÆ
ulty was addressed by Witten, who showed that it is possible to view these �ve theories as as-pe
ts of a single underlying theory, now known as M-theory (for \Membrane"). The low-energy limitof this new theory, furthermore, turns out to be 11D supergravity. So it appears that the preferreddimensionality of spa
etime may after all be 11, at least in regard to higher-dimensional theorieswhi
h are 
ompa
ti�ed.Supersymmetri
 parti
les su
h as gravitinos and neutralinos, if they exist, 
ould provide the darkor hidden matter ne
essary to explain the dynami
s of galaxies and bring 
osmologi
al observationsinto line with the simplest 4D 
osmologi
al models (see Se
tion 1.3). However, su
h `dark' matteris probably not 
ompletely dark, be
ause the parti
les 
on
erned are unstable to de
ay in realisti
(non-minimal) supersymmetri
 theories, and will 
ontribute photons to the intergala
ti
 radiation�eld. Observations of the latter 
an be used to 
onstrain supersymmetri
 weakly intera
ting massiveparti
les (WIMPS). Thus gravitinos and neutralinos are viable dark-matter 
andidates if they havede
ay lifetimes greater than of order 1011 yr and 109 yr respe
tively (Overduin and Wesson 1997b). Inthis regard, they are favored over non-supersymmetri
 
andidates su
h as massive neutrinos, axionsand a possible de
aying va
uum (Overduin and Wesson 1997
, 1992). There are other 
andidates,but 
learly the identi�
ation of dark matter is an important way of testing supersymmetry.1.7 Con
lusionThis 
hapter has presented a potted a

ount of theoreti
al physi
s as it exists at the present. Wehave learned 
ertain things, namely: that fundamental 
onstants are not (Se
tion 1.2); that generalrelativity des
ribes gravity ex
ellently in 
urved 4D spa
e (Se
tion 1.3); that parti
le physi
s workswell as a 
omposite theory in 
at 4D spa
e (Se
tion 1.4); that Kaluza-Klein theory in its originalversion uni�es gravity and ele
tromagnetism in 
urved 5D spa
e (Se
tion 1.5); and that supergravityand superstrings provide possible routes to new physi
s in 11D and 10D. So, where do we go fromhere?There is no 
onsensus answer to this, but let us 
onsider the following line of reasoning. Physi
sis a des
ription of the world as we per
eive it (Eddington). In order to give a logi
al and 
oherenta

ount of the maximum number of physi
al phenomena, we should presumably use the most ad-van
ed mathemati
al te
hniques. For the last 
entury through to now, this implies that we should24



use geometry (Einstein, Riemann). The �eld equations of general relativity have no mathemati
al
onstraint as regards the number of dimensions in whi
h they should be applied the 
hoi
e followsfrom physi
s and depends on what we wish to explain. Also, there are 
ertain ways of embeddinglower-dimensional spa
es with 
ompli
ated stru
ture in higher-dimensional spa
es with simple stru
-ture, in
luding 
at ones (Campbell, Eisenhart: see the next 
hapter). So the question of how we 
anbest des
ribe gravity and parti
le physi
s is to a 
ertain extent a question of algebrai
 te
hnology.Now we might expe
t that the many quantum properties of elementary parti
les should be des
ribedby a spa
e with a large number of dimensions. However, the 
lassi
al properties of matter should beable to be handled by a spa
e with a moderate number of dimensions.The rest of this treatise is a 
ompilation of (mainly te
hni
al) results whi
h demonstrates thisview. It will be seen that properties of matter su
h as the density and pressure of a 
uid, as well asthe rest mass and ele
tri
 
harge of a parti
le, 
an be derived from 5D geometry. This may soundsurprising, but there are important di�eren
es between what we do now and what others have donebefore. The theory we will be working with is obviously not Einstein general relativity, sin
e it isnot 4D but 5D in nature. But it is not Kaluza-Klein either, be
ause we do not invoke the hobbling
ylinder 
ondition typi
al of that theory, preferring instead to examine an unrestri
ted and ri
h 5Dalgebra. What we do in the following 
hapters also di�ers from previous work in that we do not needan expli
it energy-momentum tensor: it will be seen that matter 
an be derived from geometry.
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Chapter 2Indu
ed-Matter Theory\To make physi
s, the geometry should bite"(John Wheeler, Prin
eton, 1984)2.1 Introdu
tionWe import from the pre
eding 
hapter two important and 
onne
ted ideas. First, as realized byseveral workers, the so-
alled fundamental 
onstants like 
, G and h have as their main purposethe transposition of physi
al dimensions. Thus, a mass 
an be regarded as a length; and physi
alquantities su
h as density and pressure 
an be regarded as having the same dimensions as thegeometri
al quantities that �gure in general relativity. Se
ond, physi
al quantities should be given ageometri
 interpretation, as envisaged by many people through time, in
luding Einstein who wishedto transmute the \base wood" of physi
s to the \marble" of geometry. An early attempt at thiswas made by Kaluza and Klein, who extended general relativity from 4 to 5 dimensions, but alsoapplied severe restri
tions to the geometry (the 
onditions of 
ylindri
ity and 
ompa
ti�
ation). Inthis 
hapter, we will draw together results whi
h have appeared in re
ent years whi
h show that itis possible to interpret most properties of matter as the result of 5D Riemannian geometry, wherehowever the latter allows dependen
e on the �fth 
oordinate and does not make assumptions aboutthe topology of the �fth dimension.This indu
ed-matter theory has seen most work in 3 areas: (a) The 
ase of uniform 
osmologi
almodels is easiest to treat be
ause of the high degree of symmetry involved, and is very instru
tive. (b)The soliton 
ase is more 
ompli
ated, but important be
ause 5D solitons are the analogs of isolated 4Dmasses, and the 5D 
lass of soliton solutions 
ontains the unique 4D S
hwarzs
hild solution. (
) The
ase of neutral matter 
an be treated quite generally, and lays the foundation for many appli
ationswhere ele
tromagneti
 e�e
ts are not involved. After an outline of geometri
 feasibility (Se
tion 2.2)we will give the main theoreti
al results in ea
h of the aforementioned areas (Se
tions 2.3, 2.4, 2.5).We defer the main observational impli
ations to later 
hapters. Our 
on
lusion (Se
tion 2.6) will bethat one extra dimension is enough to explain the phenomenologi
al properties of 
lassi
al matter.From here on, we will absorb the fundamental 
onstants 
, G and h via a 
hoi
e of units thatrenders their magnitudes unity. We will use the metri
 signature with diagonal = (+ � � � �),where the last 
hoi
e will be seen to depend on the physi
al appli
ation and not 
ause any problemwith 
ausality. Also, we will label 5D quantities with upper-
ase Latin letters (A = 0 � 4) and 4Dquantities with lower-
ase Greek letters (� = 0 � 3). If there is a 
han
e of 
onfusion between the4D part of a 5D quantity and the 4D quantity as 
onventionally de�ned, we will use a hat to denotethe former and the straight symbol to denote the latter.31



2.2 A 5D embedding for 4D matterThe 5D �eld equations for apparent va
uum in terms of the Ri

i tensor areRAB = 0 : (2.1)Equivalently, in terms of the 5D Ri

i s
alar and the 5D Einstein tensor GAB � RAB�RgAB=2, theyare GAB = 0 : (2.2)By 
ontrast, the 4D �eld equations with matter are given by Einstein's relations of general relativity:G�� = 8�T�� : (2.3)The 
entral thesis of indu
ed-matter theory is that (2.3) are a subset of (2.2) with an e�e
tive orindu
ed 4D energy-momentum tensor T�� whi
h 
ontains the 
lassi
al properties of matter.That this is so will be
ome apparent below when we treat several 
ases suggested by physi
s.However, it is also possible to approa
h the subje
t through algebra; and while results in the latter�eld were subsequent, they are general and 
an be summarized here. Thus, it is a dire
t 
onsequen
eof a little-known theorem by Campbell that any analyti
 N-dimensional Riemannian manifold 
anbe lo
ally embedded in an (N+1)-dimensional Ri

i-
at (RAB = 0) Riemannian manifold (Romero,Tavakol and Zalaletdinov 1996). This is of great importan
e for establishing the generality of theproposal that 4D �eld equations with sour
es 
an be lo
ally embedded in 5D �eld equations withoutsour
es. And it 
an be used to study lower-dimensional (N < 4) gravity, whi
h may be easier toquantize than general relativity (Rippl, Romero and Tavakol 1995). It 
an also be employed to �ndnew 
lasses of 5D solutions (Lidsey et al. 1997). Some of the latter have the remarkable propertythat they are 5D 
at but 
ontain 4D subspa
es that are 
urved and 
orrespond to known physi
alsituations (Wesson 1994; Abolghasem, Coley and M
Manus 1996). The latter do not, though, in
ludethe 4D S
hwarsz
hild solution, whi
h 
an only be embedded in a 
at manifold with N � 6 (S
houtenand Struik 1921; Tangherlini 1963; for general results in embeddings see Campbell 1926; Eisenhart1949; Kramer et al. 1980). However, the prin
iple is 
lear: 
urved 4D physi
s 
an be embedded in
urved or 
at 5D geometry, and we pro
eed to study 3 prime 
ases of this.2.3 The 
osmologi
al 
aseThere are many exa
t solutions known of (2.1) that are of 
osmologi
al type, meaning that themetri
 resembles that of Robertson-Walker and the dynami
s is governed by equations like thoseof Friedmann (see Se
tion 1.3). However, most of these do not involve dependen
e on the extra
oordinate l and are from the indu
ed-matter viewpoint very restri
ted. Thus while we will use oneof these solutions below, we will 
on
entrate on the mu
h more signi�
ant solutions of Pon
e de Leon(1988). He found several 
lasses of exa
t solutions of (2.1) whose metri
s are separable and redu
eto the standard 4D RW ones on the hypersurfa
es l = 
onstants. The indu
ed matter and otherproperties asso
iated with the most physi
al 
lass of Pon
e de Leon solutions were worked out byWesson (1992a). Sin
e then, many other 
osmologi
al solutions and their asso
iated matter propertieshave been derived by various workers (see, e.g., Chatterjee and Sil 1993; Chatterjee, Panigrahi andBanerjee 1994; Liu and Wesson 1994; Liu and Mashhoon 1995; Billyard and Wesson 1996). In whatfollows, we will illustrate the transition from the 5D equations (2.1), (2.2) for apparent va
uum tothe 4D equations (2.3) with matter, by using simple but realisti
 solutions.32



It is 
onvenient to 
onsider a 5D metri
 with interval given bydS2 = e�dt2 � e!(dr2 + r2d
2)� e�dl2 : (2.4)Here the time 
oordinate x0 = t and the spa
e 
oordinates x123 = r��(d
2 � d�2 + sin2�d�2) havebeen augmented by the new 
oordinate x4 = l. The metri
 
oeÆ
ients �, !, and � will depend ingeneral on both t and l, partial derivatives with respe
t to whi
h will be denoted by an overdot andan asterisk, respe
tively. Components of the Einstein tensor in mixed form are:G00 = �e���� 3 _!24 � 3 _! _�4 � + e���3!��2 + 3!�22 � 3��!�4 �G04 = e���3!��2 + 3 _!!�4 � 3 _!��4 � 3!� _�4 �G11 = G22 = G33 = �e����! + 3 _!24 + ��2 + _�24 + _! _�2 � _� _!2 � _� _�4 �+e���!�� + 3!�24 + ���2 + ��24 + !���2 � ��!�2 � ����4 �G44 = �e���3�!2 + 3 _!22 � 3 _� _!4 � + e���3!�24 + 3!���4 � : (2.5)These are 5D 
omponents. We wish to mat
h the terms in (2.5) with the 
omponents of the usual 4Dperfe
t-
uid energy-momentum tensor. This is T�� = (p + �)���� � pg��, where �� � dx�=ds, andfor our 
ase has 
omponents T 00 = �, T 11 = �p for the density and pressure. Following the philosophyoutlined above, we simply identify the new terms (due to the �fth dimension) in G00 with �, and thenew terms in G11 with p. Then, 
olle
ting terms whi
h depend on the new metri
 
oeÆ
ient � orderivatives with respe
t to the new 
oordinate l, we de�ne8�� � �34e�� _! _�+ 32e���!��!�2 � ��!�2 �8�p � e��� ��2 + _�24 + _! _�2 � _� _�4 ��e���!�� + 3!�24 + ���2 + ��24 + !���2 � ��!�2 � ����4 � : (2.6)These are suggested identi�
ations for 4D properties of matter in terms of 5D properties of geometry.To see if they make physi
al sense to this point, we 
ombine (2.6) and (2.5) with the �eld equationsGAB = 0 of (2.2). There 
omesG00 = �34e�� _!2 + 8�� = 0G04 = e���3!��2 + 3 _!!�4 � 3 _!��4 � 3!� _�4 � = 0G11 = �e����! + 3 _!24 � _� _!2 �� 8�p = 0G44 = �e���3�!2 + 3 _!22 � 3 _� _!4 �+ e���3!�24 + 3!���4 � = 0 : (2.7)33



We see from the �rst of these that � must be positive; and from the third that p 
ould in prin
iple benegative, as needed in 
lassi
al des
riptions of parti
le produ
tion in quantum �eld theory (see, e.g.,Brout, Englert and Gunzig 1978; Guth 1981; and Se
tion 1.3). To make further progress, however,we need expli
it solutions of the �eld equations.A simple solution of (2.1) or (2.2) that is well known but does not depend on l has � = 0, ! = log t,� = � log t in (2.4), whi
h now readsdS2 = dt2 � t(dr2 + r2d
2)� t�1dl2 : (2.8)This has a shrinking �fth dimension, and from (2.6) or (2.7) density and pressure given by 8�� =3=4t2, 8�p = 1=4t2. If these are 
ombined to form the gravitational density (�+ 3p) and the properradial distan
e R � e!=2r is introdu
ed, then the mass of a portion of the 
uid isM = 4�R3(�+3p)=3.The �eld equations then ensure that �R = �M=R2 is obtained as usual for the law of motion. Similarly,the usual �rst law of thermodynami
s is re
overed by writing dE+pdV = 0 as (�e3!=2)�+p(e3!=2)� = 0(E = energy, V = 3D volume; see Wesson 1992a). The equation of state of the 
uid des
ribed by(2.8) is of 
ourse the p = �=3 typi
al of radiation.To go beyond radiation, we use one of the 
lasses of solutions to (2.1) or (2.2) due to Pon
e de Leon(1988). With a rede�nition of 
onstants appropriate to the indu
ed-matter theory, it has e� = l2,e! = t2=�l2=(1��), e� = �2(1� �)�2t2 in (2.4), whi
h now readsdS2 = l2dt2 � t2=�l2=(1��)(dr2 + r2d
2)� �2(1� �)�2t2dl2 : (2.9)This has a growing �fth dimension, and density and pressure whi
h depend on the one assignable
onstant �. From (2.6) or (2.7) they are8�� = 3�2l2t2 8�p = (2�� 3)�2l2t2 : (2.10)The presen
e of l here may appear puzzling at �rst, but the 
oordinates are of 
ourse arbitraryand the proper time is T � lt. (Alternatively, the presen
e of x4 = l depends on whether we
onsider the pure 4D metri
 or the 4D part of the 5D metri
.) In terms of this, 8�� = 3=�2T 2 and8�p = (2� � 3)=�2T 2. For � = 3=2, 8�� = 4=3T 2 and p = 0. While for � = 2, 8�� = 3=4T 2 and8�p = 1=4T 2. The former is identi
al to the 4D Einstein-de Sitter model for the late universe withdust. The latter is identi
al to the 4D standard model for the early universe with radiation or highlyrelativisti
 parti
les. (The 
oin
iden
e of the properties of matter for this model with � = 2 and theprevious model does not ne
essarily imply that they are the same, sin
e similar matter 
an belong todi�erent solutions even in 4D.) As before, the usual forms of the law of motion and the �rst law ofthermodynami
s are re
overed, provided we use the e�e
tive gravitational density of matter de�nedby the 
ombination �+3p (see Se
tion 1.3; these laws are re
overable generally for metri
s with form(2.4) using the proper time T � e�=2t and the proper distan
e R � e!=2r). The equation of state ofthe 
uid des
ribed by (2.9) is p = (2�=3� 1)�, and so generally des
ribes isothermal matter.Other properties of (2.9) were studied by Wesson (1992a, 1994), in
luding the sizes of horizonsand the nature of the extra 
oordinate l. We defer further dis
ussion of this model, be
ause here weare mainly dealing with theoreti
al aspe
ts of indu
ed-matter theory. However, we note two things.First, the solutions (2.8) and (2.9) des
ribe in general photons with zero rest mass and parti
les with�nite rest mass, respe
tively; and the fa
t that the former does not depend on l whereas the latterdoes, gives us a �rst inkling that l is related to mass (see later). Se
ond, the solution (2.9) givesan ex
ellent des
ription of matter in the late and early universe from the big-bang perspe
tive ofphysi
s in 4D; but it has a somewhat amazing property from the perspe
tive of geometry in 5D.Thus 
onsider a 
oordinate transformation from t, r, l to T , R, L spe
i�ed by34



T = ��2�tl=�ll=(1��)�1 + r2�2�� �2(1� 2�)ht�ll�=(1��)i(1�2�)=�R = rtl=�ll=(1��)L = ��2�tl=�ll=(1��)�1� r2�2�+ �2(1� 2�)ht�ll�=(1��)i(1�2�)=� : (2.11)Then (as may be veri�ed by 
omputer) the Pon
e de Leon metri
 (2.9) in standard form be
omesdS2 = dT 2 � (dR2 +R2d
2)� dL2 : (2.12)This means that our universe 
an either be viewed as a 4D spa
etime 
urved by matter or as a 5D
at spa
e that is empty.2.4 The soliton 
aseThere is a 
lass of exa
t solutions of (2.1) whi
h has been redis
overed several times during thehistory of Kaluza-Klein theory. The metri
 is stati
, spheri
ally-symmetri
 in ordinary (3D) spa
e,and independent of the �fth 
oordinate. (There are many of these solutions rather than one be
auseBirkho�'s theorem does not apply in its 
onventional form in 5D.) The solutions have been interpretedas des
ribing magneti
 monopoles (Sorkin 1983), massive obje
ts of whi
h some 
alled solitons haveno gravitational e�e
t (Gross and Perry 1983), and bla
k holes (Davidson and Owen 1985). The�rst usage is questionable, be
ause the 4D S
hwarzs
hild solution is a spe
ial member of the 
lassand gravitational in nature, and magneti
 monopoles are in any 
ase 
onspi
uous by their absen
ein the real world. The last usage is misleading, be
ause all but the S
hwarzs
hild-like member of the
lass la
k event horizons of the 
onventional sort. The middle usage 
an be extended, sin
e in theindu
ed-matter pi
ture we will see that these solutions represent stable, extended obje
ts (Wesson1992b). Thus even though the word is over-worked in physi
s, we regard these 5D 1-body solutionsas representing obje
ts 
alled solitons.A parti
ularly simple member of the soliton 
lass was redis
overed by Chatterjee (1990). Itis instru
tive to start with this, be
ause it has been analyzed in standard or S
hwarzs
hild-like
oordinates (as opposed to the isotropi
 
oordinates used below). Thus the 5D metri
 has an intervalgiven by dS2 = �1� 2pApr2 + A +pA�dt2 � dr21 + A=r2 � r2d
2��1� 2pApr2 + A +pA��1dl2 : (2.13)Here the 
onstant A would normally be identi�ed in gravitational appli
ations via the r !1 limitas pA =M�, the mass of an obje
t like a star at the 
entre of ordinary spa
e. However, as mentionedabove, it 
annot be assumed that (2.13) is a bla
k hole. Indeed, the �rst metri
 
oeÆ
ient in (2.13)goes to zero only for r tending to zero. In other words, the event horizon in the 
oordinates of (2.13)shrinks to a point at the 
entre of ordinary spa
e. (This is not altered by a Killing-ve
tor pres
riptionfor horizons and di�erent sets of 
oordinates: see Wesson and Pon
e de Leon 1984.) To see what(2.13) a
tually represents, let us use the indu
ed-matter approa
h. It is helpful to 
onsider a metri
we will 
ome ba
k to later, namely 35



dS2 = e�dt2 � e�dr2 +R2d
2 � e�dl2 : (2.14)This in
ludes (2.13) if we assume that the metri
 
oeÆ
ients �, �, R, � depend only on the radiusand not on the time or extra 
oordinate. Then following the same pro
edure as in the pre
edingse
tion, we obtain the 
omponents of the indu
ed 4D energy-momentum tensor:8�T 00 = e���12�00 + 14�02 + R0�0R � 14�0�0�8�T 11 = e���R0�0R + 14� 0�0�8�T 22 = e���12�00 + 14�02 + R0�02R + 14� 0�0 � 14�0�0� : (2.15)Here a prime denotes the partial derivative with respe
t to the radius. Other 
omponents are zero,and of 
ourse T 33 = T 22 be
ause of spheri
al symmetry. The 
omponents (2.15) whi
h de�ne theproperties of matter depend on derivatives of �, that is upon the geometry of the �fth dimension.However, matter and geometry are uni�ed via the �eld equations GAB = 0 of (2.2), and we 
an usethese to rewrite (2.15) in a more algebrai
ally 
onvenient form:8�T 00 = 1R2 � e���2R00R + R02R2 � R0�0R �8�T 11 = 1R2 � e���R02R2 + R0� 0R �8�T 22 = �14e���2� 00 + � 02 + 4R00R � 2R0�0R + 2R0� 0R � � 0�0� : (2.16)Substitutinginto these equations for the Chattejee solution (2.13) gives8�T 00 = Ar48�T 11 = � 2pAr2pr2 + A � 2ApAr4pr2 + A � Ar48�T 22 = pAr2pr2 + A + ApAr4pr2 + A : (2.17)These 
omponents obey the equation of stateT 00 + T 11 + T 22 + T 33 = 0 ; (2.18)whi
h is radiation-like. The matter des
ribed by (2.17) has a gravitational mass that 
an be evaluatedusing the standard 4D expressionMg(r) � Z (T 00 � T 11 � T 22 � T 33 )p�g4dV3 ; (2.19)where g4 is the determinant of the 4-metri
 and dV3, is a 3D volume element. Using (2.14) and (2.16)this gives 36



Mg(r) = 12 Z �� 00 + 12� 02 + 2R0� 0R � 12� 0�0�e(���)=2R2dr : (2.20)This is most 
onveniently evaluated in the 
oordinates of the Chatterjee solution in the form (2.13).Thus putting R! r and integrating givesMg(r) = 12r2e(���)=2� 0 ; (2.21)whi
h with the 
oeÆ
ients of (2.13) isMg(r) = pA�pr2 + A�pApr2 + A+pA�1=2 : (2.22)We see that Mg(1) = pA, agreeing with the usual metri
-based de�nition of the mass as notedabove. However, we also see that Mg(0) = 0, meaning that the gravitational mass goes to zero atthe 
entre. In summary, the Chatterjee soliton (2.13) is a ball of radiation-like matter whose densityand pressure fall o� very rapidly away from the 
entre, and whose integrated mass agrees with the
onventionai de�nition only at in�nity.The above 
on
erned a spe
ial 
ase of a broad 
lass of 5D solutions whi
h has been widely studiedin forms due to Gross and Perry (1983) and Davidson and Owen (1985). These authors use di�erentterminologies, parti
ularly for two dimensionless 
onstants whi
h enter the solutions. The former use�, � and the latter use �, " where the two are related by � = �1=�, " = ��=� We adopt the latternotation, as it is more suited to the indu
ed-matter approa
h. In it, positive e�e
tive density ofmatter requires � > 0, and positive gravitational mass as measured at spatial in�nity requires "� > 0(see below). Thus, physi
ality requires that both � and " be positive. In terms of these 
onstants theChatterjee solution we have looked at already has just � = 1, " = 1. And the S
hwans
hild solutionwe will look at below has "! 0, �!1, "�! 1. We now pro
eed to 
onsider the general 
lass.This has usually been dis
ussed with the metri
 in spatially isotropi
 form, whi
h we write asdS2 = e�dt2 � e�(dr2 + r2d
2)� e�dl2 : (2.23)Then solutions of the apparently empty 5D �eld equations (2.1) or (2.2) are given bye�=2 = �ar � 1ar + 1�"�e�=2 = (ar � 1)(ar + 1)a2r2 �ar + 1ar � 1�`(��1)e�=2 = �ar + 1ar � 1�" : (2.24)Here a is a dimensional 
onstant to do with the sour
e, and the two dimensionless 
onstants arerelated by a 
onsisten
y relation derived from the �eld equations:"2(�2 � � + 1) = 1 : (2.25)This means that the 
lass is a 2-parameter one, depending on a and one or the other of ", �. Also,we noted above that physi
ality requires that both � and " be positive. Now, the surfa
e area of37



2-shells around the 
entre of the 3-geometry varies as (ar � 1)1�"(��1), and will shrink to zero atr = 1=a provided 1 � "(� � 1) > 0. This 
ombined with (2.25) means � > 0. That is, the 
entreof the 3-geometry is at r = l=a for physi
al 
hoi
es of the parameters (see Billyard, Wesson andKalligas 1995 for a more extensive dis
ussion). Also, e� ! 0 for r ! 1=a for ", � > 0. So as forthe Chatterjee 
ase above, the event horizon for the general 
lass shrinks to a point at the 
entre ofordinary spa
e.The properties of the indu
ed matter asso
iated with (2.24) 
an be worked out following the samepro
edure as before. The 
omponents of the indu
ed 4D energy-momentum tensor are:8�T 00 = �e���00 + 14�02 + 2�0r �8�T 11 = �e��14�02 + 12� 0�0 + � 0r + �0r �8�T 22 = �e��� 00 + �00 + 12� 02 + � 0r + �0r � : (2.26)Substituting into these equations for the solutions in the form (2.24) and doing some tedious algebragives 8�T 00 = 4"2�a6r4(ar � 1)4(ar + 1)4�ar � 1ar + 1�2"(��1)8�T 11 = 4"a5r3(ar � 1)3(ar + 1)3�ar � 1ar + 1�2"(��1)�4"a6r4(2"+ 2ar � "�)(ar � 1)4(ar + 1)4 �ar � 1ar + 1�2"(��1)8�T 22 = � 2"a5r3(ar � 1)3(ar + 1)3�ar � 1ar + 1�2"(��1)�4"a6r4("�� "+ ar)(ar � 1)4(ar + 1)4 �ar � 1ar + 1�2"(��1) : (2.27)These 
omponents obey the same equation of state as before, namely (T 00 +T 11 +T 22 +T 33 ) = 0. If weaverage over the 3 spatial dire
tions, this is equivalent to saying that the equation of state is p = �=3.Also as before, we 
an 
al
ulate the standard 4D gravitational mass of a part of the 
uid by using(2.19). This with (2.23) givesMg(r) = 4� Z (T 00 � T 11 � T 22 � T 33 )e(�+3�)=2r2dr ; (2.28)whi
h with (2.26) is Mg(r) = 12 Z �� 00 + 12� 02 + 2� 0r + 12� 0�0�e(�+�)=2r2dr= 12r2e(���)=2� 0 : (2.29)Then with the 
oeÆ
ients of (2.24) we obtain 38



Mg(r) = 2"�a �ar � 1ar + 1�" : (2.30)This is the gravitational mass of a soliton as a fun
tion of (isotropi
) radius r, and to be positive asmeasured at in�nity requires that "� > 0. Sin
e positive density requires that � > 0 by (2.27) we seethat we need both � > 0 and " > 0, as we stated above. Then (2.30) shows that Mg(r = 1=a) = 0,meaning again that the gravitational mass goes to zero at the 
entre. However, the mass as measuredat spatial in�nity is now 2"�=a and not just 2=a =M� as it was for the Chatterjee 
ase.This is interesting, and should be 
ompared to what we obtain if we substitute parameters 
or-responding to the S
hwarzs
hild 
ase, namely " ! 0, � ! 1, "� ! 1. Then (2.30) gives Mg(r) =
onstant = 2=a = M�. And the metri
 (2.23), (2.24) be
omesdS2 = �1�M�=2r1 +M�=2r�2dt2 � �1 + M�2r �4(dr2 + r2d
2)� dl2 : (2.31)This is just the S
hwarzs
hild solution (in isotropi
 
oordinates) plus a 
at and therefore physi
allyinno
uous extra dimension. In other words, if we use the 
onventionally de�ned 4D gravitationalmass as a diagnosti
 for 5D solitons, we re
over the usual 4D S
hwarzs
hild mass exa
tly.We have 
arried out a numeri
al investigation of pre
eding relations to 
larify the status of theS
hwarzs
hild solution (Wesson and Pon
e de Leon 1994). The problem is that if we set " = 0 and"� = 1 then (2.30) gives Mg(r) = 2=a for all r; but if we keep " small and let r ! 1=a, then (2.30)gives Mg(r = 1=a) = 0 irrespe
tive of ". Clearly the limit by whi
h one is supposed to re
over theS
hwans
hild solution from the soliton solutions is ambiguous. However, our numeri
al results showthat, from the viewpoint of perturbation analysis at least, the S
hwarzs
hild 
ase is just a highly
ompressed soliton. We have also looked at other de�nitions for the mass of a soliton, in
ludingthe so-
alled proper mass (whi
h depends on an integral involving only and is badly de�ned at the
entre) and the ADM mass (whi
h depends on a produ
t of �eld strength and area and is wellde�ned at the 
entre). To 
larify what happens near the 
entre of a soliton, we have also 
al
ulatedthe geometri
 s
alars for metri
 (2.23), (2.24). The relevant 5D invariant is the Krets
hmann s
alarK � RABCDRABCD, whi
h we have evaluated algebrai
ally and 
he
ked by 
omputer. It isK = 192a10r6(a2r2 � 1)8�ar � 1ar + 1�4"(��1)f1� 2"(�� 1)(2 + "2�)ar+2(3� "4�2)a2r2 � 2"(�� 1)(2 + "2�)a3r3 + a4r4g : (2.32)Taking into a

ount the 
onstraint (2.25), this may be found to diverge for � > 0 at r = 1=a, showingthat there is a geometri
 singularity at the 
entre as we have de�ned the latter. [Note that if welet " ! 0, � ! 1, "� ! 1 then (2.32) gives K = 192a10r6=(ar + 1)12 in isotropi
 
oordinates, orK = 48M2� =(r0)6 in 
urvature 
oordinates where r0 = r(1 + 1=ar)2 and a = 2=M�. This result agreesformally with the one from Einstein theory, but from our viewpoint no longer has mu
h signi�
an
esin
e the point r0 = 0 or r = �1=a is not part of the manifold, whi
h ends at r = 1=a or r0 = 2M�.℄The relevant 4D invariant is C � R��R��, whi
h is most easily evaluated algebrai
ally using the �eldequations. The latter are (2.1) or RAB = 0, but if there is no dependen
y on the extra 
oordinateread just R�� = 8�T�� be
ause the 4D Ri

i s
alar R is zero. Then C = 64�2[(T 00 )2+(T 11 )2+2(T 22 )2℄,and 
an be evaluated using the 
omponents of the energy-momentum tensor (2.27). It isC = 8"2a10r6(a2r2 � 1)8�ar � 1ar + 1�2"(��1)f3 + 4"(3� 2�)ar39



+2(3 + 6"2 + 4"2�2 � 8"2�)a2r2 + 12"a3r3 + 3a4r4g : (2.33)This also diverges at r = 1=a, 
on�rming that there is a singularity in the geometry at the 
entre.In 
onjun
tion with the fa
t that most of them do not have event horizons of the standard sort, thismeans that te
hni
ally solitons should be 
lassi�ed as naked singularities.Whether or not we 
an see to the 
entre of a soliton, pra
ti
ally, is a di�erent question. Whatwas a point mass in 4D general relativity has be
ome a �nite obje
t in 5D indu
ed-matter theory.The 
uid is `hot', with anisotropi
 pressure and density that falls o� rapidly away from the 
entre(for large distan
es it goes as M2� =r4 where M� is the mass as measured at spatial in�nity). TheS
hwarzs
hild solution is somewhat anomalous, but 
an be regarded as a soliton where matter is so
on
entrated towards the 
entre as to leave most of spa
e empty. In short, solitons are `holes' in thegeometry surrounded by indu
ed matter.2.5 The 
ase of neutral matterKaluza-Klein theory in 5D has traditionally identi�ed the g4� 
omponents of the metri
 tensor withthe potentials A� of 
lassi
al ele
tromagnetism (see Se
tion 1.5). These set to zero therefore give insome sense a des
ription of neutral matter. However, any fully 
ovariant 5D theory, su
h as indu
ed-matter theory, has 5 
oordinate degrees of freedom, whi
h used judi
iously 
an lead to 
onsiderablealgebrai
 simpli�
ation without loss of generality. Therefore, a natural 
ase to study is spe
i�ed byg4� = 0, g44 6= 0. This removes the expli
it ele
tromagneti
 potentials and leaves one 
oordinatedegree of freedom over to be used appropriately (e.g., to simplify the equation of motion of a parti
le).This 
hoi
e of 
oordinates or 
hoi
e of gauge involves g�� = g��(xA), g44 = g44(xA) and so is notrestri
ted by the 
ylinder 
ondition of old Kaluza-Klein theory. It admits 
uids 
onsisting of parti
leswith �nite or zero rest mass, and thus in
ludes the 
ases we have studied in Se
tions 2.3 and 2.4. Inthe present se
tion, we follow Wesson and Pon
e de Leon (1992). Our aims are to give a reasonablyself-
ontained a

ount of the matter gauge and to lay the foundation for later appli
ations.We have a 5D interval dS2 = gABdxAdxB whereg�� = g��(xA) g4� = 0g44 � "�2(xA) g44 = 1g44 = "�2 : (2.34)Here "2 = 1 and the signature of the s
alar part of the metri
 is left general. (We will see laterthat there are well-behaved 
lassi
al solutions of the �eld equations with " = +1 as well as theoften-assumed " = �1, and the freedom to 
hoose this may also help with the Eu
lidean approa
hto quantum gravity.) The 5D Ri

i tensor in terms of the 5D Christo�el symbols is given byRAB = (�CAB);C � (�CAC);B + �CAB�DCD � �CAD�DBC : (2.35)Here a 
omma denotes the partial derivative, and below we will use a semi
olon to denote the ordinary(4D) 
ovariant derivative. Putting A! �, B ! � in (2.35) gives us the 4D part of the 5D quantity.Expanding some summed terms on the r.h.s. by letting C ! �; 4 et
. and rearranging givesR̂�� = (����);� + (�4��);4 � (����);� � (�4�4);� + ��������+ �����4�4 + �4���D4D � �������� � �4�����4 � �D�4�4�D : (2.36)40



Part of this is the 
onventional Ri

i tensor that only depends on indi
es 0123, soR̂�� = R�� + (�4��);4 � (�4�4);� + �����4�4+ �4���D4D � �4�����4 � �D�4�4�D : (2.37)To evaluate this we need the Christo�el symbols.These 
an be tabulated here in appropriate groups:�4�� = �g44g���2 �4�4 = g44g44;�2�D4D = gDCg�DC2 ���4 = g�Cg��C2�D�4 = gD4g44;�2 + gD
g��
2 �4�D = g44gD4;�2 � g44g�D;42 : (2.38)
��44 = �g��g44;�2 ��4� = g��g���2���� = g��g��;�2 �444 = g44g�442��4� = g��g���2 �44� = g44g44;�2 : (2.39)

��4� = g��g���2 �44� = g44g44;�2��4� = g��g���2 �444 = g44g44;42���� = g��g��;�2 ���� = g��2 (g��;� + g��;� � g��;�)��44 = �g��g44;�2 �4�� = �g44g���2 : (2.40)We will use these respe
tively to evaluate (2.37) above and (2.44), (2.54) below.Thus substituting into and expanding some terms in (2.37) givesR̂�� = R�� � g�44g���2 � g44g����2 � g44;� g44;�2 � g44g44;��2+g44g44;�����2 � g��g���g44g���4 � (g44)2g���g�444+g��g44g���g���2 � (g44)2g44;�g44;�4 : (2.41)Some of the terms here may be rewritten using 41



�g44;� g44;�2 � g44g44;��2 + g44g44;�����2 � (g44)2g44;�g44;�4= � 1�(��;� � ������) � ���;�� ; (2.42)Where �� � �;�. Then (2.41) givesR̂�� = R�� � ��;�� + "2�2���g���� � g���� + g��g���g��� � g��g���g���2 � : (2.43)We will use this below when we 
onsider the �eld equations.Returning to (2.35), we put A = 4, B = 4 and expand with C ! �, 4 et
. to obtainR44 = (��44);� � (��4�);4 + ��44���� + �444��4� � ��4���4� � �44���44 : (2.44)The Christo�el symbols here are tabulated in (2.39), and 
ause (2.44) to be
omeR44 = � g��;� g44;�2 � g��g44;��2 � g���g���2 � g��g����2� g��g44;�g��g��;�4 + g44g�44g��g���4� g��g���g��g���4 + g44g44;�g��g44;�4 : (2.45)Some of the terms here may be rewritten using�g��g44;�2 � g��g44;��2 � g��g44;�g��g��;�4 + g44g44;�g��g44;�4= �"��g��;� �� + g����;� + g��g��g��;���2 �= �"�g����;� : (2.46)Here we have obtained the last line by noting that ��;� = ��;� � ������ impliesg����;� + g��g��g��;���2 = g����;� + g��g��g��;���2 + g��g��g��;���2 ; (2.47)and that (��� );� = 0 implies (g��;� + g��g��g��;�)�� = 0. Putting (2.46) in (2.45) gives lastlyR44 = �"��� � g���g���2 � g��g����2 + ��g��g���2� � g��g��g���g���4 ; (2.48)where �� � g����;� de�nes the 4D 
urved-spa
e box operator. Equations (2.43) and (2.48) 
an beused with the 5D �eld equations (2.1) whi
h we repeat here:RAB = 0 : (2.49)42



Then R̂�� = 0 in (2.43) givesR�� = ��;�� � "2�2���g���� � g���� + g��g���g��� � g��g���g���2 � : (2.50)And R44 = 0 in (2.48) gives"��� = �g���g���4 � g��g����2 + ��g��g���2� ; (2.51)where we have noted that (Æ�� );4 = 0 implies g��g��g���g��� + g���g��� = 0. From (2.50) we 
an formthe 4D Ri

i 
urvature s
alar R = g��R��. Eliminating the 
ovariant derivative using (2.51), andagain using (Æ�� );4 = 0 to eliminate some terms, givesR = "4�2�g���g��� + �g��g����2� : (2.52)With (2.50) and (2.52), we are now in a position to de�ne if we wish an energy-momentum tensor in4D via 8�T�� � R�� �Rg��=2. It is8�T�� = ��;�� � "2�2���g���� � g���� + g��g���g��� � g��g���g���2+g��4 �g���g��� + (g��g���)2�� : (2.53)Provided we use this energy-momentum tensor, Einstein's 4D �eld equations (2.3) or G�� = 8�T��will of 
ourse be satis�ed.The mathemati
al expression (2.53) has good properties. It is a symmetri
 tensor that has apart whi
h depends on derivatives of � with respe
t to the usual 
oordinates x0123, and a partwhi
h depends on derivatives of other metri
 
oeÆ
ients with respe
t to the extra 
oordinate x4.[The �rst term in (2.53) is impli
itly symmetri
 be
ause it depends on the se
ond partial derivative,while the other terms are expli
itly symmetri
.℄ It is also 
ompatible with what is known aboutthe re
overy of 4D properties of matter from apparently empty 5D solutions of Kaluza-Klein theory.Thus the 
osmologi
al 
ase studied in Se
tion 2.3 agrees with (2.53) and has matter whi
h owes its
hara
teristi
s largely to the x4-dependen
y of g�� in that relation. While the soliton 
ase studiedin Se
tion 2.4 agrees with (2.53) and has matter whi
h depends on the �rst or s
alar term in thatrelation. With (2.53) and pre
eding relations, the 
ase where there is no dependen
y on x4 be
omestransparent. Then (2.51) be
omes the s
alar wave equation for the extra part of the metri
 (g����;� =0 with g44 = "�2). And (2.53) gives T = T��g�� = 0, whi
h implies a radiation-like equation ofstate. However, in general there must be x4-dependen
e if we are to re
over more 
omplex equationsof state from solutions of RAB = 0.These �eld equations have 4 other 
omponents we have not so far 
onsidered, namely R4� = 0.This relation by (2.35) expanded isR4� = (��4�);� + (�44�);4 � (��4�);� � (�444);�+ ��4��A�A + �44��A4A � �A4����A � �D44�4�D : (2.54)The Christo�el symbols here are tabulated in (2.40) and 
ause (2.54) to be
ome43



R4� = g44g��4 �g���g44;� � g44;�g����+ g��;� g���2+ g��g���;�2 � g��;� g���2 � g��g���;�2+ g��g��g���g��;�4 + g���g��;�4 : (2.55)Here we have done some algebra using (g44g44);� and 4 = 0 or g�44g44;� � g44;�g�44 = 0, and (Æ��);4 = 0or g��g��g�� + g��� = 0. [We also note in passing that one 
an use (�44�);4 = (�444);� in (2.54) andobtain an alternative form of (2.55) with the last term repla
ed by g��;� g���=4.℄ While (2.55) may beuseful in other 
omputations, it is helpful for our purpose here to rewrite it asR4� = ��x��g��g���2 �� ��x��g��g���2 �+ �g��g��;�2 ��g��g���2 �� �g��g��;�2 ��g��g���2 �� g44g44;�2 �g��g���2 � Æ��g��g���2 � : (2.56)Noting that �=�xa = Æ��(�=�x�) and that �g44g44;�=2 = pg44(�=�x�)(1=pg44) allows us to obtain�nally R4�pg44 = ��x� � 12pg44�g��g��� � Æ��g��g�����+ �g��g��;�2 ��g��g���2pg44 �� �g��g��;�2 ��g��g���2pg44 � : (2.57)This form suggests we should introdu
e the 4-tensorP �� � 12pg44�g��g��� � Æ��g��g���� : (2.58)The divergen
e of this is P ��;� = (P �� );� + ����P �� � ����P �� ;whi
h when written out in full may be shown to be the same as the r.h.s. of (2.57). The lattertherefore reads R4�pg44 = P ��;� : (2.59)The �eld equations (2.49) as R4� = 0 
an then be summed up by the relationsP ��;� = 0 ;P �� � 12pg44�g��g��� � Æ��g��g���� : (2.60)44



These have the appearan
e of 
onservation laws for P �� . The fully 
ovariant form and asso
iateds
alar for the latter are: P�� = 12pg44�g��� � g��g��g����P = �3g��g���2pg44 : (2.61)We will examine these quantities elsewhere, but here we 
omment that while our starting gauge(2.34) removed the expli
it ele
tromagneti
 potentials, the �eld equations R4� = 0 or (2.60) are ofele
tromagneti
 type.It is apparent from the working in this se
tion that the starting 
onditions (2.34) provide a
onvenient way to split the 5D �eld equations RAB = 0 into 3 sets: The 5D equations R̂�� = 0give a set of equations in the 4D Ri

i tensor R�� (2.50); the 5D equation R44 = 0 gives a wave-likeequation in the s
alar potential (2.51); and the 5D equations R4� = 0 
an be expressed as a setof 4D 
onservation laws (2.60). Along the way we also obtain some other useful relations, notablyan expression for the 4D Ri

i s
alar in terms of the dependen
y of the 4D metri
 on the extra
oordinate (2.52). However, the physi
ally most relevant expression is an e�e
tive or indu
ed 4Denergy-momentum tensor (2.53). Another way to express these results is to say that the 15 �eldequations RAB = 0 of (2.1) or GAB = 0 of (2.2) 
an always be split into 3 sets whi
h make physi
alsense provided the metri
 is allowed to depend on the extra 
oordinate x4. These sets 
onsist of 4
onservation equations of ele
tromagneti
 type, 1 equation for the s
alar �eld of wave type, and 10equations for �elds and matter of gravitational type. In fa
t, the last are Einstein's equations (2.3)of general relativity, with matter indu
ed from the extra dimension.2.6 Con
lusionThe idea of embedding G�� = 8�T�� (4D) in RAB = 0 (5D) is motivated by the wish to explain
lassi
al properties of matter rather than merely a

epting them as given. In appli
ation to the 
os-mologi
al 
ase it works straightforwardly, and gives ba
k 5D geometri
 quantities whi
h are identi
alto the 4D density and pressure (Se
tion 2.3). This is important: what we derive from the 5D equa-tions is not something esoteri
 but ordinary matter. In appli
ation to the soliton or 1-body 
ase, theidea leads to a 
lass of radiation-like solutions whi
h 
ontains as a very spe
ial 
ase the S
hwarzs
hildsolution (Se
tion 2.4). In general appli
ation to neutral matter, the properties of the latter turn outto be intimately 
onne
ted to x4-dependen
y of the metri
 (Se
tion 2.5). Indu
ed-matter theorya
tually admits a wide variety of equations of state (Pon
e de Leon and Wesson 1993). But in thematter gauge at least, independen
e from x4 implies radiation-like matter, while dependen
e on x4implies other kinds of matter.The theoreti
al basis we have demonstrated in this 
hapter leads naturally to the question ofobservations, parti
ularly with regard to the solitons. As mentioned above, there is a 
lass of thesein 5D rather than the unique S
hwarzs
hild solution of 4D, be
ause Birkho�'s theorem in its 
onven-tional form does not apply. Indeed, there are known exa
t solutions whi
h represent time-dependentsolitons (Liu, Wesson and Pon
e de Leon 1993; Wesson, Liu and Lim 1993). And there is known anexa
t solution whi
h is x4-dependentand S
hwarzs
hild-like (Mashhoon, Liu and Wesson, 1994). Wewill return to the latter, where we will �nd that it implies the same dynami
s as in general relativityand so poses no problem. However, there remains the question of the observational status of thestandard solitons. This has been investigated by a number of people, most of whom were not workingin the indu
ed-matter pi
ture (see Overduin and Wesson 1997). Here, we 
an regard the soliton as a45




on
entration of matter at the 
entre of ordinary spa
e, and ask about the motions of test parti
lesat large distan
es. Spe
i�
ally, we ask what 
onstraints we 
an put on the soliton 1-body metri
from the 
lassi
al tests of relativity.
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